
MCS-284 Intra-term Exam 2 Serial #:

This exam is closed-book and mostly closed-notes. You may, however, use a single 8 1/2 by 11 sheet
of paper with hand-written notes for reference. (Both sides of the sheet are OK.)

Please write your name only on this page. Do not turn the page until instructed, in order that everyone
may have the same time. Then, be sure to look at all problems before deciding which one to do first.
Some problems are easier than others, so plan your time accordingly. You have 50 minutes to work.

Write the answer to each problem on the page on which that problem appears. You may also request
additional paper, which should be labeled with your test number and the problem number.

Printed name:

Problem Page Possible Score
1 2 25
2 3 24
3 4 25
4 6 26

Total 100

MCS-284 -2- Serial #:

1. [25 Points] Make any necessary modifications to the datapath and control table, reproduced
below, of the single-cycle processor to add a new instruction, lwr. The lwr (or Load Word
Registers) instruction loads a value from memory into a register, like lw does. The difference is
in how the address of the memory location is calculated. Recall that lw adds an offset specified
in the instruction to the value of a base register to find the address. With lwr, we again add
two quantities to find the address, but this time both of them come from registers. Thus an
lwr instruction contains three registers: one to receive the loaded value, and two to provide the
address. We will use the same general layout as for R-format instructions, with the rs and rt
fields specifying the address registers, and the rd field specifying the register to receive the result.
(Rs is bits 25–21, rt is bits 20–16, and rd is bits 15–11.) A different opcode is used than for
normal R-format instructions, however.

(a) Add any new features you need to the datapath below.

PAT05F17.eps

Read
register 1

Read
register 2

Write
register

Write
data

Write
data

Registers

ALU

Add

Zero

Read
data 1

Read
data 2

Sign
extend

16 32

Instruction
[31–0] ALU

result

Add

ALU
result

M
u
x

M
u
x

M
u
x

Address

Data
memory

Read
data

Shift
left 2

4

Read
address

Instruction
memory

PC

1

0

0

1

0

1

M
u
x

0

1

ALU
control

Instruction [5–0]

Instruction [25–21]

Instruction [31–26]

Instruction [15–11]

Instruction [20–16]

Instruction [15–0]

RegDst
Branch
MemRead
MemtoReg
ALUOp
MemWrite
ALUSrc
RegWrite

Control

(b) Fill in the extra row in the control table below for the new lwr instruction. If you added
any new control signals in the previous part of this problem, add columns for them to this
table and show the values in those new columns in all rows, old as well as new.

Reg ALU Memto Reg Mem Mem ALU ALU
Instruction Dst Src Reg Write Read Write Branch Op1 Op0
R-format 1 0 0 1 0 0 0 1 0

lw 0 1 1 1 1 0 0 0 0
sw X 1 X 0 0 1 0 0 0
beq X 0 X 0 0 0 1 0 1
lwr

MCS-284 -2- November 10, 2008

MCS-284 -3- Serial #:

2. [24 Points] For each of the following eight sequences of instructions, indicate whether
chapter 6’s pipelined processor would use forwarding, stalling, both, or neither. As usual, we are
assuming that registers are written in the first half of the clock cycle and read during the second
half; this doesn’t count as forwarding.

(a) add $2, $11, $3
lw $5, 16($1)
add $6, $1, $7
add $10, $8, $9

(b) add $2, $11, $3
lw $5, 16($1)
add $6, $5, $7
add $10, $8, $9

(c) lw $5, 16($1)
add $10, $8, $9
add $6, $5, $7
add $2, $11, $3

(d) lw $5, 16($1)
add $10, $8, $9
add $2, $11, $3
add $6, $5, $7

(e) add $2, $11, $3
add $5, $2, $4
lw $1, 16($7)
add $10, $8, $1

(f) lw $5, 16($1)
add $10, $8, $9
add $6, $7, $10
add $2, $11, $3

(g) add $2, $11, $3
sw $2, 16($1)
add $6, $1, $7
add $10, $8, $9

(h) add $2, $11, $3
lw $5, 16($1)
add $6, $1, $7
sw $5, 16($8)

MCS-284 -3- November 10, 2008

MCS-284 -4- Serial #:

3. [25 Points] Modify the datapath and state machine of the multi-cycle processor to add a
new instruction, swai. The swai (or Store Word And Increment) instruction stores a value into
memory from a register, like sw does. However, it afterwards also increments the base address
register by 4. The reason to add this instruction is that programs have many loops that store
values into consecutive words of memory. Those loops often have two instructions like

sw $t0, 16($t1)
addi $t1, $t1, 4

With the new swai instruction, the above two instructions could be replaced with one:

swai $t0, 16($t1)

The machine-language format of swai uses the Rs, Rt, and Imm fields in the same way as sw.

The datapath you are to modify is on the next page, and the state machine to modify is below.

PAT05F37.eps

MemRead
ALUSrcA = 0

IorD = 0
IRWrite

ALUSrcB = 01
ALUOp = 00

PCWrite
PCSource = 00

ALUSrcA = 0
ALUSrcB = 11
ALUOp = 00

ALUSrcA = 1
ALUSrcB = 00
ALUOp = 10

ALUSrcA = 1
ALUSrcB = 10
ALUOp = 00

MemRead
IorD = 1

MemWrite
IorD = 1

RegDst = 1
RegWrite

MemtoReg = 0

RegDst = 0
RegWrite

MemtoReg = 1

PCWrite
PCSource = 10

ALUSrcA = 1
ALUSrcB = 00
ALUOp = 01

PCWriteCond
PCSource = 01

Instruction decode/
register fetch

Instruction fetch

0 1

Start

(Op = 'LW
') or (O

p = 'SW')

(O
p =

 R-ty
pe

)

(O
p

=
'B

EQ
')

(O
p

=
'J'

)

Jump
completion

9862

3

4

5 7

Memory read
completon step

R-type completion
Memory
access

Memory
access

Execution
Branch

completion
Memory address

computation

(Op = 'SW')

(O
p

=
'LW

')

MCS-284 -4- November 10, 2008

MCS-284 -5- Serial #:

PA
T0

5F
28

.e
ps

Re
ad

re

gi
st

er
 1

Re
ad

re

gi
st

er
 2

W
rit

e
re

gi
st

er

W
rit

e
da

ta

Re
gi

st
er

s
AL

U
Ze

ro

Re
ad

da

ta
 1

Re
ad

da

ta
 2

Si
gn

ex

te
nd

16
32

In

st
ru

ct
io

n
[3

1–
26

]
In

st
ru

ct
io

n
[2

5–
21

]
In

st
ru

ct
io

n
[2

0–
16

]
In

st
ru

ct
io

n
[1

5–
0]

AL
U

re
su

lt

M
 u x

M
 u x

Sh
ift

le

ft
2

Sh
ift

le

ft
2

In
st

ru
ct

io
n

re
gi

st
er

PC
0 1

M
 u x0 1

M
 u x0 1

M
 u x0 1

A B
0 1 2 3

M
 u x

0 1 2

AL
UO

ut

In
st

ru
ct

io
n

[1
5–

0]

M
em

or
y

da
ta

re

gi
st

er

Ad
dr

es
s

W
rit

e
da

taM
em

or
y

M
em

Da
ta

4

In
st

ru
ct

io
n

[1
5–

11
]

PC
W

rit
eC

on
d

PC
W

rit
e

Io
rD

M

em
Re

ad

M
em

W
rit

e
M

em
to

Re
g

IR
W

rit
e

PC
So

ur
ce

AL
UO

p

AL
US

rc
B

AL
US

rc
A

Re
gW

rit
e

Re
gD

st

26
28

O
ut

pu
ts

Co
nt

ro
l

O
p

[5
–0

]

AL
U

co
nt

ro
l

PC
 [3

1–
28

]

In
st

ru
ct

io
n

[2
5-

0]

In
st

ru
ct

io
n

[5
–0

]

Ju
m

p
ad

dr
es

s
[3

1–
0]

MCS-284 -5- November 10, 2008

MCS-284 -6- Serial #:

4. [26 Points] The diagram on the next page shows the pipelined datapath. Thirteen lines
on it have been marked with circled letters, (a) through (m). Suppose we execute the following
sequence of instructions. During the first clock cycle, the first instruction is fetched from address
1000 in instruction memory:

add $9, $5, $6
lw $4, 16($8)
sw $1, 32($2)
beq $7, $3, 100

Suppose further that the following registers and data memory locations contain the specified
values when execution starts:

Registers Data Memory Locations
1: 100 216: 13
2: 200 232: 26
3: 300 416: 39
4: 400 432: 52
5: 500 816: 65
6: 600 832: 78
7: 700
8: 800
9: 900

During the fourth clock cycle, what value is on each line? If there isn’t enough information given
for you to know the value, write N/A.

MCS-284 -6- November 10, 2008

MCS-284 -7- Serial #:

WB

M

EX

WB

M WB

M
em

W
rit

e

PCSrc

M
em

to
Re

g

MemRead

Add

Address

Instruction
memory

Read
register 1

Read
register 2

Instruction
[15–0]

Instruction
[20–16]

Instruction
[15–11]

Write
register

Write
data

Read
data 1

Read
data 2

Registers Address

Write
data

Read
data

Data
memory

Add Add
result

ALU ALU
result

Zero

Shift
left 2

Sign
extend

PC

4

ID/EX

IF/ID

EX/MEM

MEM/WB

PAT06F27.eps

16 632 ALU
control

RegDst

ALUOp

ALUSrc

Re
gW

In
st

ru
ct

io
n

rit
e Branch

Control

0
M
u
x

1

0
M
u
x

1

0
M
u
x

1

0
M
u
x

1

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(i)

(j)

(k)

(l)

(m)

MCS-284 -7- November 10, 2008

