MCS-274 Final Exam Serial #:

This exam is closed-book and mostly closed-notes. You may, however, use a single 8 1/2 by 11 sheet
of paper with hand-written notes for reference. (Both sides of the sheet are OK.)

Please write your name only on this page. Be sure to look at all problems before deciding which one to
do first. Some problems are easier than others, so plan your time accordingly. You have 120 minutes
to work.

Write the answer to each problem on the page on which that problem appears. You may also attach
additional paper, which should be labeled with your test number and the problem number.

You must sign the honor pledge below and abide by it.

Printed name:

On my honor, I pledge that I have not given, received, nor tolerated others’ use of unauthorized aid in
completing this work.

Signature for above honor pledge:

Possible ‘ Score

[

N D] o] || S| O] =[] W N

—

10 |
10 |
10 |
10 |
10 |
10 |
10 |
10 |
10 |

14 10
Total 100




MCS-274 -2- Serial #:

1. [ 10 Points | The following tables are used to describe a simplified bank’s customers and their
transactions:

create table customers (
name varchar(30) not null,
id int primary key
);

create table transactions (
customer int not null references customers(id),
amount int not null,
id int primary key
);

Write each of the following SQL queries. The word “deposit” means a transaction with an amount
that is greater than zero. None of your queries should produce duplicate rows.

(a) List the following information for each transaction: the transaction ID number, the customer
ID number, the customer name, and the amount.

(b) List the following information for each customer: the customer ID number, the customer
name, and the number of transactions the customer has on record. This last piece of infor-
mation should be in a column labeled NUM and should be present even if it is zero.

(c) List the ID number and name of each customer who has made at least one deposit.
(d) List the ID number and name of each customer who has made no deposits.

(e) List the ID number and total of deposit amounts for each customer whose total deposit
amounts is greater than 1000. The list should be arranged so that the ID numbers are
increasing. (Remember: this problem only refers to the amounts for deposit transactions.)

MCS-274 2 May 23. 2009



MCS-274 -3- Serial #:

2. [ 10 Points | Consider the following relation:

A B C D
ap by ¢ dy
ap by co di
azg by c1 da

(a) Cross out those FDs that don’t hold in the relation:

A— B
A—C
A—D
B— A
B—C
B—D
C— A
C — B
C—-D
D— A
D— B
D—C
AB—C
AB— D
AC — B
AC — D
AD— B
AD—C
BC— A
BC —D
BD— A
BD—-C
CD— A
CD— B
ABC — D
ABD — C
ACD — B
BCD— A

(b) Put a + sign next to some of the non-crossed-out FDs, such that those you have marked
can serve as a minimal basis for all those you didn’t cross off.

(c) List all the keys for the relation.
(d) Put a — sign next to each non-crossed-out FD that violates BCNF.

(e) Put a x sign next to each non-crossed-out FD that violates 3NF.

MCS-274 _3- May 23. 2009



MCS-274 -4- Serial #:

3. [ 10 Points | Consider the following E/R diagram:

ax

A
R1 0
B

(a) Translate this design into an appropriate collection of CREATE TABLE statements, includ-
ing all relevant constraints. You may assume that all attributes are of type INT.

(b) Make the necessary modifications to the diagram to indicate that A is a weak entity set.

(c) State how you would change your CREATE TABLE statements to reflect A being a weak
entity set.

MCS-274 4- May 23. 2009



MCS-274 -5- Serial #:

4. [ 10 Points | Next to each of the CREATE VIEW statements, indicate whether the view is
updatable, and if not, why not.

create table A (
al int,
a2 int

)

create table B (
bl int not null,
b2 int not null
);

create view V1 as
select al, a2
from A

where al > 10;

create view V2 as
select al

from A

where al > 10;

create view V3 as
select bl, b2
from B

where bl > 10;

create view V4 as
select bl

from B

where bl > 10;

create view V5 as
select al, a2, bl, b2

from A, B
where al > 10
and a2 = bil;

MCS-274 _5- May 23. 2009



MCS-274 -6- Serial #:

5. [ 10 Points | The following problems concern programming in PL/SQL:

(a) PL/SQL distinguishes functions from procedures. A function returns a result value, whereas
a procedure does not. Nonetheless, when some PL/SQL code calls a procedure, it frequently
wants to receive some information back from the called procedure. What language mecha-
nism is typically used for the procedure to provide information to its caller?

(b) Suppose some PL/SQL code has declared a numeric variable, BEST, and that this variable
should contain the maximum value found in the RATING column of the BEERS table.
Write a reasonably simple PL/SQL statement to achieve this.

(c) How would the BEST variable be declared to have the same type as the BEERS table’s
RATING column, without needing to know what that type is?

(d) What would a suitable declaration be for BEERS_CURSOR to enable the following loop?

for b in beers_cursor loop
—-- The body of the loop goes here.
—-- This body is executed for each row of the BEERS table,
-- from highest RATING to lowest RATING, and can make use
-— of each row’s NAME, QUANTITY, and RATING.

end loop;

(e) Within the body of the preceding loop, what notation would be used for the value of the
NAME column in the current row?

(f) Suppose that instead of using the preceding FOR loop, the cursor is accessed using an OPEN
statement and a FETCH statement. What notation would be used to determine whether
the FETCH statement succeeded in retrieving any data from the table?

MCS-274 ~6- May 23. 2009



MCS-274 -7- Serial #:

6. [ 10 Points | Considering the following excerpt from my beer inventory:

Quantity ‘ Name Rating
4 Ommegang Hennepin | 93

5 Two Hearted Ale 100

5 Founders Porter 99

(a) Write an XML file corresponding to this data that uses empty elements with attributes. You
can omit the initial XML declaration line, which is

<?xml version="1.0" encoding="UTF-8" 7>

(b) Write a second XML file corresponding to the same data but this time using only nonempty
elements and no attributes. You can again omit the initial XML declaration.

MCS-274 7 May 23. 2009



MCS-274

7. [ 10 Points ]
import java.sql.x*;

public class Beers{

public static void main(String[] args){

try{
int a
int b

Integer.parselnt(args[0]);
Integer.parselnt(args[1]);

Class.forName("oracle. jdbc.OracleDriver");
Connection myCon = DriverManager.getConnection
("jdbc:oracle:oci:@//thebe.gac.edu:1521/xe",

"anon",

" anon") ;

PreparedStatement s = myCon.prepareStatement
("select rating, quantity, name from max.beers" +
" where quantity >= 7" +
" and rating >= 7");
s.setInt(2, a); //<————""—"""—""""——————————————

s.setInt(1, b);

ResultSet rs =
while(rs.next(){ //<-——---—-———————mmmmmmmmm

System.
System.
System.
System.
System.
System.

¥

out.
out.
out.
.print(" ");
out.

out

out

s.executeQuery();
print(rs.getInt(1)); //<----———----————-
print(" ");

print(rs.getInt(2));

print(rs.getString(3));

.printlnQ);

} catch(Exception e){
System.err.println(e) ;

System.exit(1);

3

Answer the following questions on the next page:

(a) What does the JDBC method invocation on LINE 1 do?

(b) What does the JDBC method invocation on LINE 2 do? Be sure to consider both the first

time it is invoked and any subsequent times.

—
o

code.

(e) Write a description of the output the user should expect to see when running this program.
Your description should make reference both to the format of the output and its meaning

) What does the JDBC method invocation on LINE 3 do?

(d) The integer variables a and b are initialized from information passed to the program. By
looking further down in the program at how these variables are used, write a simple descrip-
tion of the meaning of each of these two quantities. That is, you should explain the meaning
of a and b in terms that make sense for a user of the program who doesn’t care about the

Serial #:

for a reader who doesn’t care about the code. Assume no Exception occurs.

MCS-274

8

May 23, 2009



MCS-274 -9- Serial #:

MCS-274 -9- May 23. 2009



MCS-274 -10-

8. [ 10 Points | Suppose this XML document:

<?xml version = ’1.0’ encoding="UTF-8"7>
<hotels
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:noNamespaceSchemalocation="bogotels.xsd">
<hotelinfo NAME="ACME Luxury Acapulco">
<STARS>4</STARS>
<BEACH>Y</BEACH>
<DESCRIPTION>The ACME Luxury Acapulco is a luxurious beautiful
beach front with all the amenities that a 4 star hotel
is expected to have.</DESCRIPTION>
</hotelinfo>
<hotelinfo NAME="ACME Luxury San Francisco">
<STARS>5</STARS>
<BEACH>Nearby</BEACH>
</hotelinfo>
<hotelinfo>
<DESCRIPTION>Also contains the CICE</DESCRIPTION>
<STARS>3</STARS>
<BEACH>N</BEACH>
</hotelinfo>
</hotels>

is validated relative to the Schema on the next page:

MCS-274 -10-

Serial #:

May 23, 2009



MCS-274 11-

<?xml version=’1.0’ encoding=’UTF-8’7>
<xs:schema xmlns:xs="http://www.w3.o0rg/2001/XMLSchema">
<xs:simpleType name="starsType">
<xs:restriction base ="xs:integer">
<xs:minInclusive value="1"/>
<xs:maxExclusive value="5"/>
</xs:restriction>
</xs:simpleType>
<xs:simpleType name="ynType">
<xs:restriction base ="xs:string">
<xs:enumeration value="Y"/>
<xs:enumeration value="N"/>
</xs:restriction>
</xs:simpleType>
<xs:element name="hotels">
<xs:complexType>
<xs:sequence>
<xs:element name="hotelinfo" maxOccurs="unbounded">
<xs:complexType>
<xs:all>

<xs:element name="DESCRIPTION" type="xs:string"/>

<xs:element name="STARS" type="starsType"/>
<xs:element name="BEACH" type="ynType"/>
</xs:all>

<xs:attribute name="NAME" type="xs:string" use="required"/>

</xs:complexType>
</xs:element>
</xs:sequence>
</xs:complexType>
</xs:element>
</xs:schema>

Serial #:

(a) Circle of the four places in the XML document where it violates the Schema and write next

to each a brief explanation.

(b) Show how to modify the Schema so as to make the DESCRIPTION optional.

MCS-274 -11-

May 23, 2009



MCS-274 -12- Serial #:

9. [ 10 Points | Consider this XML document:

<Candidates>
<County id="88" name="MULTI-COUNTY">
<0ffice id="0101" name="US PRESIDENT AND VICE PRESIDENT">
<Candidate id="01010301" party="R">JOHN MCCAIN AND SARAH PALIN</Candidate>
<Candidate id="01010401" party="DFL">BARACK OBAMA AND JOE BIDEN</Candidate>

<Candidate
<Candidate
<Candidate
<Candidate
<Candidate

id="01010501"
id="01010601"
id="01010801"
id="01010901"
id="01011001"

party="GP">CYNTHIA MCKINNEY AND ROSA CLEMENTE</Candidate>
party="SWP">ROGER CALERO AND ALYSON KENNEDY</Candidate>
party="IND">RALPH NADER AND MATT GONZALEZ</Candidate>
party="LIB">BOB BARR AND WAYNE A. ROOT</Candidate>
party="CP">CHUCK BALDWIN AND DARRELL CASTLE</Candidate>

<Candidate id="01019901" party="WI">WRITE-IN**</Candidate>
</0ffice>
<0ffice id="0103" name="US SENATOR">
<Candidate id="01030201" party="IP">DEAN BARKLEY</Candidate>
<Candidate id="01030301" party="R">NORM COLEMAN</Candidate>
<Candidate id="01030401" party="DFL">AL FRANKEN</Candidate>
<Candidate id="01030901" party="LIB">CHARLES ALDRICH</Candidate>
<Candidate id="01031001" party="CP">JAMES NIEMACKL</Candidate>
<Candidate i1d="01039901" party="WI">WRITE-IN**</Candidate>
</0ffice>
</County>
<County id="52" name="NICOLLET">
<0ffice id="0392" name="COUNTY COMMISSIONER DISTRICT 2">
<Candidate id="03929001" party="NP">JAMES STENSON</Candidate>
<Candidate id="03929901" party="WI">WRITE-IN**</Candidate>
</0ffice>
</County>
</Candidates>

Write XQuery expressions for each of the following:

(a) Find the Candidate elements for the LIB party and produce the sequence of these elements
surrounded by the tags <Libertarians> and </Libertarians>

(b) Find the names (as strings, not name attributes) for the offices that have candidates from
both the R and DFL parties. List each only once.

MCS-274 -192- May 23. 2009



MCS-274 -13- Serial #:

(c) Find the 0ffice elements that have more than two candidates.

(d) Find the 0Office elements where every candidate for that office has either NP or WI as its
party attribute.

(e) Transform the given data into this form:

<Candidates>
<Candidate>
<Name>JOHN MCCAIN AND SARAH PALIN</Name>
<0ffice>US PRESIDENT AND VICE PRESIDENT</Office>
<Party>R</Party>
</Candidate>

<Candidate>
<Name>WRITE-IN**</Name>
<0ffice>COUNTY COMMISSIONER DISTRICT 2</0Office>
<Party>WI</Party>
</Candidate>
</Candidates>

MCS-274 13- May 23. 2009



MCS-274 -14- Serial #:

10. [ 10 Points | An XML document begins as follows:

<?xml version="1.0" encoding="UTF-8" 7>
<!DOCTYPE A [
<!ELEMENT I EMPTY>
<!ELEMENT II EMPTY>
<!ELEMENT III EMPTY>
<!ELEMENT B EMPTY>
<IELEMENT C (I | II | III)>
<I'ATTLIST C
x (alpha | beta) #REQUIRED
y CDATA #IMPLIED>
<!ELEMENT A (Bx, C+)>
1>

Write the shortest possible conclusion to this XML document so that it will be valid with regard
to the included DTD. That is, you should use as few characters as possible while keeping the
XML valid (not just well formed).

MCS-274 -14- May 23. 2009



