
!"#$%&'()*+,-&#.-*%(/*0'//1#2%$#*
+3""4$&'()*54(&$411#/*6(&#$%7&'4(

0%8*9%'1"#$'(

:$##*$#;$#1#%-#*4<*<'$-&*#/'&'4(

!"#$%&'()*+,-&#.-*%(/*0'//1#2%$#3*+4""5$&'()*65(&$511#/*7(&#$%8&'5(

9,*0%:*;%'1"#$'(

<=#*85..#$8'%11,*"491'-=#/*>#$-'5(*5?*&='-*25$@*A7+BC*DEFGHEHIGJKELM*2%-*65",$')=&*N*IDDO*9,*<=5.-5(*654$-#*

<#8=(515),P*%*/'>'-'5(*5?*<=5.-5(*Q#%$('()P*7(8RP*"4$-4%(&*&5*%(*%--')(.#(&*5?*$')=&-*?$5.*&=#*%4&=5$R

<='-*?$##*$#E$#1#%-#*'-*65",$')=&*N*IDDFEIDSD*9,*0%:*;%'1"#$'(P*"4$-4%(&*&5*%(*%--')(.#(&*5?*&=#*$')=&-*9%8@*&5*='.*9,*

654$-#*<#8=(515),P*%*/'>'-'5(*5?*6#()%)#*Q#%$('()P*7(8RP*-488#--5$E'(E'(&#$#-&*&5*&=#*"491'-=#$R**T')=&-*&5*'114-&$%&'5(-*

$#(/#$#/*9,*&=#*"491'-=#$*2#$#*%1-5*%--')(#/*9,*654$-#*<#8=(515),*&5*0%:*;%'1"#$'(*%(/*&=5-#*'114-&$%&'5(-*%$#*'(814/#/*'(*

&=#*1'8#(-#*=#*)$%(&-*?5$*&='-*?$##*$#E$#1#%-#R

<='-*25$@*'-*1'8#(-#/*4(/#$*&=#*6$#%&'>#*65..5(-*U&&$'94&'5(E+=%$#U1'@#*GRD*V('&#/*+&%&#-*Q'8#(-#R*<5*>'#2*%*85",*5?*&='-*

1'8#(-#P*>'-'&*=&&"3WW8$#%&'>#85..5(-R5$)W1'8#(-#-W9,E-%WGRDW4-W*5$*-#(/*%*1#&&#$*&5*6$#%&'>#*65..5(-P*SOS*+#85(/*+&$##&P*

+4'&#*GDDP*+%(*X$%(8'-85P*6%1'?5$('%P*KHSDFP*V+UR

<=#*?$##*$#E$#1#%-#*2%-*"$#"%$#/*?$5.*?'(%1*"%)#*"$55?-*%(/*-=541/*9#*85."1#,*'/#(&'8%1*&5*&=#*85..#$8'%11,*"491'-=#/ *

>#$-'5(R**7(*"%$&'841%$P*%11*&=#*#$$%&%*1'-&#/*5(*&=#*2#9*-'&#*-&'11*%""1,R**A<=#*%4&=5$*'(&#(/-*&5*$#1#%-#*-49-#Y4#(&*>#$-'5(-*&=%& *

'(85$"5$%&#*&=#*85$$#8&'5(-*%-*2#11*%-*4"/%&#-*%(/*'."$5>#.#(&-R**+49-#Y4#(&*>#$-'5(-*.%,*%1-5*9#*'(*%*.5$#*#%-'1, *

.5/'?'%91#*?5$.*&5*#(854$%)#*"%$&'8'"%&'5(*9,*5&=#$*85(&$'94&5$-R**Z1#%-#*#.%'1*-4))#-&'5(-*&5*.%:[)4-&%>4-R#/4RM

6$#/'&-*?$5.*&=#*85..#$8'%11,*"491'-=#/*>#$-'5(3

+#('5$*Z$5/48&*0%(%)#$3*U1,--%*Z$%&&

0%(%)'()*\/'&5$3*0%$,*X$%(]

^#>#15".#(&*\/'&5$3*_'11*B%&'-&'8@

+#('5$*0%$@#&'()*0%(%)#$3*`%$#(*+#'&]

U--58'%&#*Z$5/48&*0%(%)#$3*_#(('?#$*+.'&=

\/'&5$'%1*U--'-&%(&3*U11'-5(*04$"=,

+#('5$*0%(4?%8&4$'()*655$/'(%&5$3*_4-&'(*Z%1.#'$5

65>#$*^#-')(#$3*^#95$%=*a%(T55,#(

65."5-'&5$3*7(&#$%8&'>#*65."5-'&'5(*65$"5$%&'5(

hailperin-163001 book October 21, 2005 16:10

To
My Family

hailperin-163001 book October 21, 2005 16:10

hailperin-163001 book October 21, 2005 16:10

BRIEF

Contents
PREFACE xv

1. Introduction 1

2. Threads 19

3. Scheduling 39

4. Synchronization and Deadlocks 72

5. Atomic Transactions 123

6. Virtual Memory 165

7. Processes and Protection 220

8. Files and Other Persistent Storage 269

9. Networking 324

10. Messaging, RPC, and Web Services 369

11. Security 395

APPENDIX A. Stacks 428

! v "

hailperin-163001 book October 21, 2005 16:10

hailperin-163001 book October 21, 2005 16:10

TABLE OF

Contents
PREFACE xv

1. Introduction 1
1.1 Chapter Overview 1
1.2 What Is an Operating System? 2
1.3 What Is Middleware? 6
1.4 Objectives for the Book 7
1.5 Multiple Computations on One Computer 9
1.6 Controlling Interactions Between Computations 10
1.7 Supporting Interaction Across Time 12
1.8 Supporting Interaction Across Space 14
1.9 Security 15

Exercises 16
Programming Project 17
Exploration Projects 17
Notes 18

2. Threads 19
2.1 Introduction 19
2.2 Example of Multi-Threaded Programs 22
2.3 Reasons for Using Concurrent Threads 24
2.4 Switching Between Threads 27
2.5 Preemptive Multitasking 33
2.6 Security and Threads 34

Exercises 35
Programming Projects 36
Exploration Projects 37
Notes 38

! vii "

hailperin-163001 book October 21, 2005 16:10

viii ! Table of Contents

3. Scheduling 39
3.1 Introduction 39
3.2 Thread States 40
3.3 Scheduling Goals 44

3.3.1 Throughput 44
3.3.2 Response Time 47
3.3.3 Urgency, Importance, and Resource Allocation 48

3.4 Fixed-Priority Scheduling 52
3.5 Dynamic-Priority Scheduling 56

3.5.1 Earliest Deadline First Scheduling 56
3.5.2 Decay Usage Scheduling 57

3.6 Proportional-Share Scheduling 62
3.7 Security and Scheduling 65

Exercises 67
Programming Projects 69
Exploration Projects 70
Notes 70

4. Synchronization and Deadlocks 72
4.1 Introduction 72
4.2 Races and the Need for Mutual Exclusion 74
4.3 Mutexes and Monitors 76

4.3.1 The Mutex Application Programming Interface 77
4.3.2 Monitors: A More Structured Interface to Mutexes 81
4.3.3 Underlying Mechanisms for Mutexes 82

4.4 Other Synchronization Patterns 89
4.4.1 Bounded Buffers 89
4.4.2 Readers/Writers Locks 91
4.4.3 Barriers 92

4.5 Condition Variables 94
4.6 Semaphores 98
4.7 Deadlock 101

4.7.1 The Deadlock Problem 101
4.7.2 Deadlock Prevention Through Resource Ordering 104
4.7.3 Ex Post Facto Deadlock Detection 105
4.7.4 Immediate Deadlock Detection 106

4.8 The Interaction of Synchronization with Scheduling 109
4.8.1 Priority Inversion 109
4.8.2 The Convoy Phenomenon 111

hailperin-163001 book October 21, 2005 16:10

Table of Contents ! ix

4.9 Security and Synchronization 114
Exercises 115
Programming Projects 117
Exploration Projects 119
Notes 121

5. Atomic Transactions 123
5.1 Introduction 123
5.2 Example Applications of Transactions 126

5.2.1 Database Systems 127
5.2.2 Message-Queuing Systems 130
5.2.3 Journaled File Systems 135

5.3 Mechanisms to Ensure Atomicity 137
5.3.1 Serializability: Two-Phase Locking 137
5.3.2 Failure Atomicity: Undo Logging 144

5.4 Transaction Durability: Write-Ahead Logging 147
5.5 Additional Transaction Mechanisms 151

5.5.1 Increased Transaction Concurrency: Reduced Isolation 151
5.5.2 Coordinated Transaction Participants: Two-Phase Commit 154

5.6 Security and Transactions 156
Exercises 159
Programming Project 161
Exploration Projects 162
Notes 163

6. Virtual Memory 165
6.1 Introduction 165
6.2 Uses for Virtual Memory 170

6.2.1 Private Storage 170
6.2.2 Controlled Sharing 171
6.2.3 Flexible Memory Allocation 174
6.2.4 Sparse Address Spaces 176
6.2.5 Persistence 177
6.2.6 Demand-Driven Program Loading 178
6.2.7 Efficient Zero Filling 178
6.2.8 Substituting Disk Storage for RAM 179

6.3 Mechanisms for Virtual Memory 180
6.3.1 Software/Hardware Interface 182
6.3.2 Linear Page Tables 185

hailperin-163001 book October 21, 2005 16:10

x ! Table of Contents

6.3.3 Multilevel Page Tables 190
6.3.4 Hashed Page Tables 194
6.3.5 Segmentation 197

6.4 Policies for Virtual Memory 201
6.4.1 Fetch Policy 202
6.4.2 Placement Policy 204
6.4.3 Replacement Policy 205

6.5 Security and Virtual Memory 212
Exercises 213
Programming Projects 215
Exploration Projects 215
Notes 218

7. Processes and Protection 220
7.1 Introduction 220
7.2 POSIX Process Management API 222
7.3 Protecting Memory 230

7.3.1 The Foundation of Protection: Two Processor Modes 231
7.3.2 The Mainstream: Multiple Address Space Systems 234
7.3.3 An Alternative: Single Address Space Systems 235

7.4 Representing Access Rights 237
7.4.1 Fundamentals of Access Rights 237
7.4.2 Capabilities 241
7.4.3 Access Control Lists and Credentials 245

7.5 Alternative Granularities of Protection 252
7.5.1 Protection Within a Process 252
7.5.2 Protection of Entire Simulated Machines 253

7.6 Security and Protection 257
Exercises 262
Programming Projects 264
Exploration Projects 265
Notes 266

8. Files and Other Persistent Storage 269
8.1 Introduction 269
8.2 Disk Storage Technology 272
8.3 POSIX File API 275

8.3.1 File Descriptors 275
8.3.2 Mapping Files into Virtual Memory 279

hailperin-163001 book October 21, 2005 16:10

Table of Contents ! xi

8.3.3 Reading and Writing Files at Specified Positions 281
8.3.4 Sequential Reading and Writing 282

8.4 Disk Space Allocation 283
8.4.1 Fragmentation 284
8.4.2 Locality 287
8.4.3 Allocation Policies and Mechanisms 288

8.5 Metadata 290
8.5.1 Data Location Metadata 291
8.5.2 Access Control Metadata 300
8.5.3 Other Metadata 301

8.6 Directories and Indexing 303
8.6.1 File Directories Versus Database Indexes 303
8.6.2 Using Indexes to Locate Files 304
8.6.3 File Linking 305
8.6.4 Directory and Index Data Structures 308

8.7 Metadata Integrity 310
8.8 Polymorphism in File System Implementations 313
8.9 Security and Persistent Storage 315

Exercises 317
Programming Projects 319
Exploration Projects 319
Notes 322

9. Networking 324
9.1 Introduction 324

9.1.1 Networks and Internets 325
9.1.2 Protocol Layers 327
9.1.3 The End-to-End Principle 330
9.1.4 The Networking Roles of Operating Systems, Middleware,

and Application Software 331
9.2 The Application Layer 332

9.2.1 The Web as a Typical Example 332
9.2.2 The Domain Name System: Application Layer as Infrastructure 334
9.2.3 Distributed File Systems: An Application Viewed

Through Operating Systems 337
9.3 The Transport Layer 339

9.3.1 Socket APIs 340
9.3.2 TCP, The Dominant Transport Protocol 344
9.3.3 Evolution Within and Beyond TCP 347

hailperin-163001 book October 21, 2005 16:10

xii ! Table of Contents

9.4 The Network Layer 349
9.4.1 IP, Versions 4 and 6 349
9.4.2 Routing and Label Switching 351
9.4.3 Network Address Translation: An End to End-to-End? 352

9.5 The Link and Physical Layers 355
9.6 Network Security 356

9.6.1 Security and the Protocol Layers 357
9.6.2 Firewalls and Intrusion Detection Systems 359
9.6.3 Cryptography 361
Exercises 365
Programming Projects 366
Exploration Projects 367
Notes 368

10. Messaging, RPC, and Web Services 369
10.1 Introduction 369
10.2 Messaging Systems 370
10.3 Remote Procedure Call 373

10.3.1 Principles of Operation for RPC 374
10.3.2 An Example Using Java RMI 377

10.4 Web Services 382
10.5 Security and Communication Middleware 387

Exercises 390
Programming Projects 392
Exploration Projects 394
Notes 394

11. Security 395
11.1 Introduction 395
11.2 Security Objectives and Principles 396
11.3 User Authentication 401

11.3.1 Password Capture Using Spoofing and Phishing 402
11.3.2 Checking Passwords Without Storing Them 403
11.3.3 Passwords for Multiple, Independent Systems 404
11.3.4 Two-Factor Authentication 405

11.4 Access and Information-Flow Controls 406
11.5 Viruses and Worms 411
11.6 Security Assurance 414
11.7 Security Monitoring 417

hailperin-163001 book October 21, 2005 16:10

Table of Contents ! xiii

11.8 Key Security Best Practices 419
Exercises 421
Programming Projects 424
Exploration Projects 425
Notes 426

APPENDIX A. Stacks 428
A.1 Stack-Allocated Storage: The Concept 429
A.2 Representing a Stack in Memory 430
A.3 Using a Stack for Procedure Activations 431

BIBLIOGRAPHY 434

INDEX 444

hailperin-163001 book October 21, 2005 16:10

hailperin-163001 book October 21, 2005 16:10

Preface
Suppose you sit down at your computer to check your email. One of the messages
includes an attached document, which you are to edit. You click the attachment, and
it opens up in another window. After you start editing the document, you realize you
need to leave for a trip. You save the document in its partially edited state and shut
down the computer to save energy while you are gone. Upon returning, you boot the
computer back up, open the document, and continue editing.

This scenario illustrates that computations interact. In fact, it demonstrates at least
three kinds of interactions between computations. In each case, one computation pro-
vides data to another. First, your email program retrieves new mail from the server,
using the Internet to bridge space. Second, your email program provides the attach-
ment to the word processor, using the operating system’s services to couple the two
application programs. Third, the invocation of the word processor that is running
before your trip provides the partially edited document to the invocation running
after your return, using disk storage to bridge time.

In this book, you will learn about all three kinds of interaction. In all three cases,
interesting software techniques are needed in order to bring the computations into
contact, yet keep them sufficiently at arms length that they don’t compromise each
other’s reliability. The exciting challenge, then, is supporting controlled interaction.
This includes support for computations that share a single computer and interact with
one another, as your email and word processing programs do. It also includes support
for data storage and network communication. This book describes how all these kinds
of support are provided both by operating systems and by additional software layered
on top of operating systems, which is known as middleware.

Audience
If you are an upper-level computer science student who wants to understand how
contemporary operating systems and middleware products work and why they work
that way, this book is for you. In this book, you will find many forms of balance. The

! xv "

hailperin-163001 book October 21, 2005 16:10

xvi ! Preface

high-level application programmer’s view, focused on the services that system soft-
ware provides, is balanced with a lower-level perspective, focused on the mechanisms
used to provide those services. Timeless concepts are balanced with concrete exam-
ples of how those concepts are embodied in a range of currently popular systems.
Programming is balanced with other intellectual activities, such as the scientific mea-
surement of system performance and the strategic consideration of system security in
its human and business context. Even the programming languages used for examples
are balanced, with some examples in Java and others in C or C++. (Only limited por-
tions of these languages are used, however, so that the examples can serve as learning
opportunities, not stumbling blocks.)

Systems Used as Examples
Most of the examples throughout the book are drawn from the two dominant families
of operating systems: Microsoft Windows and the UNIX family, including especially
Linux and Mac OS X. Using this range of systems promotes the students’ flexibility.
It also allows a more comprehensive array of concepts to be concretely illustrated, as
the systems embody fundamentally different approaches to some problems, such as
the scheduling of processors’ time and the tracking of files’ disk space.

Most of the examples are drawn from the stable core portions of the operating
systems and, as such, are equally applicable to a range of specific versions. Whenever
Microsoft Windows is mentioned without further specification, the material applies
to Windows NT, Windows 2000, Windows XP, Windows Server 2003, and (so far as
can be determined from pre-release information) Windows Vista. All Linux examples
are from version 2.6, though much of the material applies to other versions as well.
Wherever actual Linux source code is shown (or whenever fine details matter for other
reasons), the specific subversion of 2.6 is mentioned in the end-of-chapter notes. All
Mac OS X examples are from version 10.4, also known as Tiger. However, other than
the description of the Spotlight feature for indexed file search, all the material is appli-
cable to earlier versions.

Where the book discusses the protection of each process’s memory, one additional
operating system is brought into the mix of examples, in order to illustrate a more
comprehensive range of alternative designs. The IBM iSeries, formerly known as the
AS/400, embodies an interesting approach to protection that might see wider applica-
tion within current students’ lifetimes. Rather than giving each process its own address
space (as Linux, Windows, and Mac OS X do), the iSeries allows all processes to share
a single address space and to hold varying access permissions to individual objects
within that space.

hailperin-163001 book October 21, 2005 16:10

Preface ! xvii

Several middleware systems are used for examples as well. The Oracle database sys-
tem is used to illustrate deadlock detection and recovery as well as the use of atomic
transactions. Messaging systems appear both as another application of atomic transac-
tions and as an important form of communication middleware, supporting distributed
applications. The specific messaging examples are drawn from the IBM WebSphere MQ
system (formerly MQSeries) and the Java Message Service (JMS) interface, which is part
of Java 2 Enterprise Edition (J2EE). The other communication middleware examples
are Java RMI (Remote Method Invocation) and web services. Web services are explained
in platform-neutral terms using the SOAP and WSDL standards, as well as through a
J2EE interface, JAX-RPC (Java API for XML-Based RPC).

Organization of the Text
Chapter 1 provides an overview of the text as a whole, explaining what an operating
system is, what middleware is, and what sorts of support these systems provide for
controlled interaction.

The next nine chapters work through the varieties of controlled interaction that
are exemplified by the scenario at the beginning of the preface: interaction between
concurrent computations on the same system (as between your email program and
your word processor), interaction across time (as between your word processor before
your trip and your word processor after your trip), and interaction across space (as
between your email program and your service provider’s email server).

The first of these three topics is controlled interaction between computations oper-
ating at one time on a particular computer. Before such interaction can make sense,
you need to understand how it is that a single computer can be running more than
one program, such as an email program in one window and a word processing pro-
gram in another. Therefore, Chapter 2 explains the fundamental mechanism for divid-
ing a computer’s attention between concurrent computations, known as threads.
Chapter 3 continues with the related topic of scheduling. That is, if the computer
is dividing its time between computations, it needs to decide which one to work on
at any moment.

With concurrent computations explained, Chapter 4 introduces controlled
interactions between them by explaining synchronization, which is control over the
threads’ relative timing. For example, this chapter explains how, when your email pro-
gram sends a document to your word processor, the word processor can be constrained
to read the document only after the email program writes it. One particularly impor-
tant form of synchronization, atomic transactions, is the topic of Chapter 5. Atomic
transactions are groups of operations that take place as an indivisible unit; they are

hailperin-163001 book October 21, 2005 16:10

xviii ! Preface

most commonly supported by middleware, though they are also playing an increas-
ing role in operating systems.

Other than synchronization, the main way that operating systems control the in-
teraction between computations is by controlling their access to memory. Chapter 6
explains how this is achieved using the technique known as virtual memory. That
chapter also explains the many other objectives this same technique can serve. Virtual
memory serves as the foundation for Chapter 7’s topic, which is processes. A process is
the fundamental unit of computation for protected access, just as a thread is the funda-
mental unit of computation for concurrency. A process is a group of threads that share
a protection environment; in particular, they share the same access to virtual memory.

The next three chapters move outside the limitations of a single computer operat-
ing in a single session. First, consider the document stored before a trip and available
again after it. Chapter 8 explains persistent storage mechanisms, focusing particularly
on the file storage that operating systems provide. Second, consider the interaction
between your email program and your service provider’s email server. Chapter 9 pro-
vides an overview of networking, including the services that operating systems make
available to programs such as the email client and server. Chapter 10 extends this
discussion into the more sophisticated forms of support provided by communication
middleware, such as messaging systems, RMI, and web services.

Finally, Chapter 11 focuses on security. Because security is a pervasive issue, the
preceding ten chapters all provide some information on it as well. Specifically, the final
section of each chapter points out ways in which security relates to that chapter’s par-
ticular topic. However, even with that coverage distributed throughout the book, a
chapter specifically on security is needed, primarily to elevate it out of technical par-
ticulars and talk about general principles and the human and organizational context
surrounding the computer technology.

The best way to use these chapters is in consecutive order. However, Chapter 5 can
be omitted with only minor harm to Chapters 8 and 10, and Chapter 9 can be omitted
if students are already sufficiently familiar with networking.

Relationship to Computing Curricula 2001
Operating systems are traditionally the subject of a course required for all computer
science majors. In recent years, however, there has been increasing interest in the idea
that upper-level courses should be centered less around particular artifacts, such as
operating systems, and more around cross-cutting concepts. In particular, the recently
adopted Computing Curricula 2001 (CC2001) provides encouragement for this ap-
proach, at least as one option. Most colleges and universities still retain a relatively

hailperin-163001 book October 21, 2005 16:10

Preface ! xix

traditional operating systems course, however. Therefore, this book steers a middle
course, moving in the direction of the cross-cutting concerns while retaining enough
familiarity to be broadly adoptable.

The following table indicates the placement within this text of knowledge units
from CC2001’s computer science body of knowledge. Those knowledge units desig-
nated as core units within CC2001 are listed in italics. The book covers all core operat-
ing systems (OS) units, as well as two elective OS units. The overall amount of coverage
for each unit is always at least that recommended by CC2001, though sometimes the
specific subtopics don’t quite correspond exactly. Outside the OS area, this book’s most
substantial coverage is of Net-Centric Computing (NC); another major topic, transac-
tion processing, comes from Information Management (IM). In each row, the listed
chapters contain the bulk of the knowledge unit’s coverage, though some topics may
be elsewhere.

Knowledge unit
(italic indicates core units in CC2001) Chapter(s)
OS1 Overview of operating systems 1
OS2 Operating system principles 1, 7
OS3 Concurrency 2, 4
OS4 Scheduling and dispatch 3
OS5 Memory management 6
OS7 Security and protection 7, 11
OS8 File systems 8
NC1 Introduction to net-centric computing 9
NC2 Communication and networking (partial coverage) 9
NC3 Network security 9
NC4 The web as an example of . . . (partial coverage) 9
NC5 Building web applications (partial coverage) 10
IM7 Transaction processing 5

Your Feedback is Welcome
Comments, suggestions, and bug reports are welcome; please send email to
max@gustavus.edu. Bug reports in particular can earn you a bounty of $2.56 apiece as
a token of gratitude. (The great computer scientist Donald Knuth started this tradition.
Given how close to bug-free his publications have become, it seems to work.) For pur-
poses of this reward, the definition of a bug is simple: if as a result of your email the
author chooses to make a change, then you have pointed out a bug. The change need

hailperin-163001 book October 21, 2005 16:10

xx ! Preface

not be the one you suggested, and the bug need not be technical in nature. Unclear
writing qualifies, for example.

Features of the Text
Each chapter concludes with five standard elements. The last numbered section within
the chapter is always devoted to security matters related to the chapter’s topic. Next
comes three different lists of opportunities for active participation by the student:
exercises, programming projects, and exploration projects. Finally, the chapter ends
with historical and bibliographic notes.

The distinction between exercises, programming projects, and exploration projects
needs explanation. An exercise can be completed with no outside resources beyond
paper and pencil: you need just this textbook and your mind. That does not mean
all the exercises are cut and dried, however. Some may call upon you to think cre-
atively; for these, no one answer is correct. Programming projects require a nontrivial
amount of programming; that is, they require more than making a small, easily iden-
tified change in an existing program. However, a programming project may involve
other activities beyond programming. Several of them involve scientific measurement
of performance effects, for example; these exploratory aspects may even dominate over
the programming aspects. An exploration project, on the other hand, can be an exper-
iment that can be performed with no real programming; at most you might change a
designated line within an existing program. The category of exploration projects does
not just include experimental work, however. It also includes projects that require you
to do research on the Internet or using other library resources.

Supplemental Resources
The author of this text is making supplemental resources available on his own web site.
Additionally, the publisher has commissioned additional resources from independent
supplement authors and is making them available through the Thomson Course Tech-
nology web site.

Author’s Supplements
The author’s web site, http://www.gustavus.edu/+max/os-book/, will contain at least the
following materials:

• Source code in Java, C, or C++ for all programs that are shown in the text

• Artwork files for all figures in the text

• An errata list that will be updated on an ongoing basis

hailperin-163001 book October 21, 2005 16:10

Preface ! xxi

Publisher’s Supplements
The publisher’s web site, www.course.com, will contain the same Java, C, and C++ pro-
gram files that are available on the author’s site and printed in the text. The publisher
will provide other supplements as well; the author of each independently created sup-
plement will be listed in the preface of the Instructor’s Manual. The following descrip-
tions were provided by the publisher:

Electronic Instructor’s Manual The Instructor’s Manual that accompanies this text-
book includes additional instructional material to assist in class preparation,
including Sample Syllabi, Chapter Outlines, Technical Notes, Lecture Notes, Quick
Quizzes, Teaching Tips, Discussion Topics, and Key Terms.

ExamView® This objective-based test generator lets the instructor create paper, LAN,
or Web-based tests from testbanks designed specifically for this Thomson Course
Technology text. Instructors can use the QuickTest Wizard to create tests in fewer
than five minutes by taking advantage of Thomson Course Technology’s question
banks, or they can create customized exams.

PowerPoint Presentations Microsoft PowerPoint slides are included for each chap-
ter. Instructors might use the slides in a variety of ways, including as teaching
aids during classroom presentations or as printed handouts for classroom distri-
bution. Instructors can modify the slides provided or include slides of their own
for additional topics introduced to the class.

Solutions Solutions to Exercises and Projects are provided on the Teaching Tools
CD-ROM and may also be found on the Thomson Course Technology Web site at
www.course.com. The solutions are password protected.

Figure Files Electronic figure files for all art in the text are available on the Teaching
Tools CD-ROM.

Distance Learning Thomson Course Technology is proud to present online test banks
in WebCT and Blackboard to provide the most complete and dynamic learning
experience possible. For more information on how to access the online test bank,
contact your local Thomson Course Technology sales representative.

Acknowledgments
This book was made possible by financial and logistical support from my employer,
Gustavus Adolphus College, and moral support from my family. I would like to
acknowledge the contributions of the publishing team, especially developmental edi-
tor Jill Batistick and Product Manager Alyssa Pratt. I am also grateful to my students

hailperin-163001 book October 21, 2005 16:10

xxii ! Preface

for doing their own fair share of teaching. I particularly appreciate the often exten-
sive comments I received from the following individuals, each of whom reviewed one
or more chapters: Dan Cosley, University of Minnesota, Twin Cities; Allen Downey,
Franklin W. Olin College of Engineering; Michael Goldweber, Xavier University;
Ramesh Karne, Towson University; G. Manimaran, Iowa State University; Alexander
Manov, Illinois Institute of Technology; Peter Reiher, University of California, Los
Angeles; Rich Salz, DataPower Technology; Dave Schulz, Wisconsin Lutheran College;
Sanjeev Setia, George Mason University; and Jon Weissman, University of Minnesota,
Twin Cities. Although I did not adopt all their suggestions, I did not ignore any of
them, and I appreciate them all.

