1. If two different fuels are placed in an alcohol burner like we used in the laboratory and 10.2 grams of fuel A raise the temperature of 100.0 g of water 2.0 degrees C and 9.5 grams of fuel B raise the temperature of 100.0 g of water 4.0 degrees C, what is the energy content (kcal/g) of fuels A and B? Which might make a better fuel and how might density (g/mL) come into this consideration? (8 pts)

2. Write out the combustion reaction for ethanol, CH₃CH₂OH. (3 pts)

3. This is the Lewis structure for ethanol, C₂H₅OH. Calculate the energy change associated with breaking all of the bonds in ethanol. (4 pts)

\[
\begin{align*}
\text{C-H} &= 416 \\
\text{C-O} &= 336 \\
\text{O-H} &= 467 \\
\text{C-O} : 498 \\
\text{C=O} : 803 \\
\end{align*}
\]
4. Using chemical bond energies, determine the Energy (kJ/mol) term for the below combustion reaction. (1 kcal/mole = 4.184 kJ/mole) (6 pts)

\[\text{CH}_4(\text{g}) + 2\text{O}_2(\text{g}) \rightarrow \text{CO}_2(\text{g}) + 2\text{H}_2\text{O}(\text{g}) + \text{Energy} \]

5. Wind Energy Calculations (10 pts)

![Graph showing kW production vs mph]

a. What is the approximate start-up speed for the above turbine?

b. At what wind speed is this turbine at peak capacity?

c. How many kW can this turbine produce at peak capacity?

d. If the average capacity factor for this turbine was 25% in St Peter (i.e. over the year it averages 25% of its peak capacity), how many kWh would this turbine produce in one year?

e. If you could sell this electricity at $0.07/kWh, how much money could you earn in one year?
6. Which line segment in the diagram represents the net energy change for this reaction?
A + B ----> C + D (3 pts)

![Diagram](image)

7. Complete the following table: (8 pts)

<table>
<thead>
<tr>
<th>Name</th>
<th>Chemical Formula</th>
<th>Cation</th>
<th>Anion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sodium Chloride</td>
<td></td>
<td></td>
<td>Cl⁻</td>
</tr>
<tr>
<td>Potassium Hydroxide</td>
<td></td>
<td></td>
<td>OH⁻</td>
</tr>
<tr>
<td>Sodium Sulfate</td>
<td></td>
<td></td>
<td>SO₄²⁻</td>
</tr>
<tr>
<td>Magnesium Phosphate</td>
<td></td>
<td></td>
<td>PO₄³⁻</td>
</tr>
<tr>
<td>Ferric Chloride</td>
<td>FeCl₃</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aluminum Hydroxide</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ammonium Nitrate</td>
<td></td>
<td>NH₄⁺</td>
<td></td>
</tr>
</tbody>
</table>

8. Explain why water is a liquid at room temperature, while other molecules like oxygen and nitrogen are gases. (4 pts)

9. Explain why an aqueous solution of NaCl conducts electricity while a solution of sugar does not. (4 pts)
10. Lake stratification (9 pts)

Above is a typical temperature profile for a stratified lake in Minnesota. Draw typical temperature profiles for fall, winter, and spring. Briefly explain each profile.
11. Given the following absorbance readings determine approximate concentrations (10 pts)

<table>
<thead>
<tr>
<th>Sample</th>
<th>NO₃ absorbance</th>
<th>NO₃ concentration</th>
<th>PO₄ absorbance</th>
<th>PO₄ concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Treatment Plant</td>
<td>0.35</td>
<td>0.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Influent</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Treatment Plant</td>
<td>0.15</td>
<td></td>
<td>0.18</td>
<td></td>
</tr>
<tr>
<td>Effluent</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MN River Water</td>
<td>0.28</td>
<td></td>
<td>0.10</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a. Give a possible explanation for the trend in phosphate concentrations that were observed.

b. Draw a Lewis dot structure for nitrate NO₃⁻

12. Fill in the table below: (4 pts)

<table>
<thead>
<tr>
<th>[H⁺] M</th>
<th>[OH⁻] M</th>
<th>pH</th>
<th>pOH</th>
</tr>
</thead>
<tbody>
<tr>
<td>10⁻⁷</td>
<td></td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>10⁻⁸.⁴</td>
<td></td>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>
13. (8 pts)

a. How many times more acidic is the rain in New York City (just south of West Point which we examined in class) than in a typical location in Minnesota using the map below. State your answer in terms of concentration of H^+ in mole/L (M).

[Map of the United States showing pH levels]

b. Explain the difference in acidity of the rain in the two locations

c. Explain why natural, unpolluted rainwater is more acidic than de-ionized water. How does this relate to the taste of a glass of water left out over night?

14. How does burning coal result in acid rain? Explain what chemical is actually released from the stack and what chemicals eventually fall as acid rain. (4 pts)

15. Write a balance equation for the destruction of limestone (CaCO_3) with acid rain (H^+) (4 pts)
17. Comment on the following letters to the editor with reference to our class discussions and your scientific knowledge. (6 pts)

For Cleaner Air in the Land of the Free (3 Letters)

New York Times: Published: April 24, 2004

To the Editor:

David Brooks ("Clearing the Air," column, April 20) suggests that the Bush administration "could have moved aggressively to find another way forward" when it became clear that the Kyoto treaty to limit greenhouse gas emissions "was never going to be ratified by the Senate."

In fact, under President Bush's policies, the United States is leading the world in initiatives to curb the growth of greenhouse gas emissions, particularly in the development of new energy technologies that will also reduce America's dependence on foreign oil.

These efforts include developing hydrogen fuel technologies designed to replace gasoline with pollution-free hydrogen; carbon sequestration technologies to remove greenhouse emissions from coal and other fossil fuels; efforts to make nuclear power, which produces no greenhouse gases, safer and more economical; research into nuclear fusion as a power source for the future; the FutureGen project to develop a coal-fired power plant that emits no pollutants or greenhouse gases; and incentives to expand the use of renewable energy sources like wind and solar.

SPENCER ABRAHAM
Secretary of Energy
Washington, April 22, 2004

To the Editor:

David Brooks writes (column, April 20) that a Congressional coalition is blocking the Bush administration's cap-and-trade reforms to the Clean Air Act to prevent a political victory. In fact, there are major differences among competing proposals from the administration and leading members of Congress.

In a research paper, we found that all the proposals — which all embrace cap-and-trade schemes — would yield more benefits than costs, but some more so than others. Most important, the proposals differ significantly on the timing of pollution reductions.

The Bush administration proposal would achieve most of its emission reductions a decade or more later, leading to tens of billions of dollars in additional health costs from
harmful emissions. As John Maynard Keynes famously said, "In the long run, we are all dead," but he didn't intend this as environmental policy.

DALLAS BURTRAW
Senior Fellow
Resources for the Future
Washington, April 22, 2004

•

To the Editor:

David Brooks says environmental claims put forth by environmental and industry groups are mostly equally biased (column, April 20). But this argument is completely illogical. In fact, only the industry groups have a vested economic interest in "proving" global warming false.

DANIEL NEMSER
Ann Arbor, Mich., April 20, 2004

On my honor, I pledge that I have not given, received, or tolerated others' use of unauthorized aid in completing this work