Homework #1

As the first part of this class is “review”, the homework problems from the QM section are taken from various chapters of M&S (i.e., 1-13).

QM

1. The anti-symmetric stretch of CO₂ appears in an IR spectrum at 2349.16 cm⁻¹. Translate this value into frequency (in Hz), wavelength (in nm), and energy (in J).
2. Problem 1-22 from McQuarrie and Simon
3. Problem 5-14 from McQuarrie and Simon; The following definitions will be useful:
 \[\nu = \frac{1}{2\pi} \left(\frac{k}{\mu} \right)^{1/2} \quad \text{and} \quad \mu = \frac{m_1 m_2}{m_1 + m_2} \]
 where \(\nu \) is the frequency, \(k \) is the force constant, and \(\mu \) is the reduced mass.
4. Given that \(\nu = 2330 \text{ cm}^{-1} \) and \(D_0 = 78715 \text{ cm}^{-1} \) for N₂, calculate \(D_e \).
5. Problem 13-33 from McQuarrie and Simon
6. The energy difference between the J=0 and J=1 rotational levels for carbon monoxide (¹²C¹⁶O) is \(\nu = 1.153 \times 10^5 \text{ MHz} \).
 a. Calculate the energy difference between the J=0 and J=2 rotational levels. Give your answers in Hz, kJ, nm, and cm⁻¹.
 b. Calculate the degeneracy of the first 4 rotational levels.

Gas Laws

1. McQuarrie and Simon: 6, 7 (use virial expansion to \(B_{2V} \)), 16, 31-34 (hint: make one spreadsheet for all 3 problems!), 44, 57, 58**;
2. Imagine you have a small sealed glass vial containing CO₂. You can clearly see a meniscus about half way up the vial, showing that the liquid and vapor phases are in coexistence. The vial has a volume of 9 mL, contains 4.9 grams of CO₂, and is at a temperature of 300 K. Using the van der Waals EOS and the critical values for CO₂, \(T_C = 304 \text{ K}, V_C = 0.095 \text{ dm}^3\cdot\text{mol}^{-1}, P_C = 73.84 \text{ bar} \), find the pressure in the vial. Although you will use the van der Waals EOS, do not use the specific values of the van der Waals coefficients, \(a \) and \(b \), for CO₂.

Hint: Write the van der Waals EOS in terms of reduced variables using the following definitions,
\[T_c = \frac{8a}{27bR} \quad P_c = \frac{a}{27b^2} \quad V_c = 3b \]

For Review on 9/14
Group A= M&S, 5-14
Group B= M&S, 16-7
Group C= Gas Laws, #2

** The key to the problem is understanding partial differential notation. If you don’t know how to do this problem, ask!! This type of problem will reoccur often in CHE371!