
CHE 372 Gustavus Adolphus College 

Lab #5: Computational Chemistry 

Introduction 
In this investigation we will apply the techniques of computational chemistry to 

several of the molecular systems that we have investigated experimentally.  As with the 
use of any tool, instrumental or otherwise, we need to understand the underlying 
machinery before we can use the results to forward our investigation of a particular 
molecule or reaction.  With computational chemistry it is even more critical that we 
understand the principles so that we can correctly interpret the results and not be mislead 
by erroneous results. 

 
          We will focus our attention on ab initio, from the beginning, calculations that are 
based solely on the underlying quantum mechanical treatment of electrons and nuclei 
within molecules and in principle require no experimental values to calibrate the results 
of the calculations nor parameters based on experiment.  These methods are even 
applicable to chemical compounds, which do not yet exist, or which exist for such a short 
time that their properties can not be determined experimentally.  Among these short lived 
states are transition states.  These computations are also important for the calculation of 
molecular geometry, electronic properties, and other molecular properties of stable 
molecules. 
 
 You have likely already done some computational chemistry in other courses 
using WebMO. This lab assignment takes a closer look at the how computations are set-
up in Gaussian and what is being calculated. For this reason, we will spend one week on 
an introduction to computational chemistry looking at simple molecules like H2 and HCl, 
and a follow-up week on more complex molecules (chosen by you). We will not use the 
graphical interface, WebMO, for analysis of the simple molecules, but you have the 
option of using it for analysis of the complex molecules.  
 
          As a starting point we will examine the approximate description of the radial (away 
from the nucleus) distribution of electrons.  The description of the radial distribution of 
electrons is key to understanding any chemistry and properties of atomic and molecular 
systems. Most quantum chemical programs use Gaussian functions to simulate this 
distribution and thus we will start at this point. 

 Overview of Theory 

                            (1) 

          In the quantum mechanical description of molecular electronic structure it is 
necessary to formulate the Schrödinger equation in terms of a Hamiltonian with several 
approximations.  First, since nuclei are much more massive than electrons and therefore 
electron motion is much faster than that of nuclei we can remove the nuclear kinetic 
energy terms and arrive at a separate molecular electronic Hamiltonian.  This 



approximation is known as the Born-Oppenheimer approximation.  In the potential 
energy part of the Hamiltonian we must treat the potential term corresponding to 
electron-electron repulsion in an average way rather than having the motions of every 
pair of electrons correlated.   
 
          With the exception of the case of the hydrogen atom we can not formulate the 
exact wavefunctions which are solutions to the Schrödinger equation.  Molecules can 
present even more difficulty than multielectron atoms in terms of formulating the 
electronic wavefunctions.  An orbital is a wavefunction for an individual electron.  
Wavefunctions for electrons in molecules are known as molecular orbitals.  Since we 
don’t know the exact molecular wavefunctions or orbitals we can approximate them by 
expanding them in a set of known functions each with coefficients corresponding to their 
importance in the overall wavefunction.  This is possible because any function can be 
described by expansion in an infinite set of functions.  When this set becomes finite the 
description may not be as good but an approximate function may be reached.   

                                                                   (2) 

                                                                 (3) 

          Many computational programs model molecular electronic structure by forming 
molecular orbitals that are linear combinations of atomic orbitals (LCAO-MO).  These 
atomic orbitals are approximated by using terms consisting of several Gaussian functions 
with varying exponents.  Atomic orbitals are described by hydrogenic wavefunctions 
with quantum numbers n, l, ml. (see Ch. 6 McQuarrie).  It is most convenient to express 
these wavefunctions in spherical coordinates as: 

                                     (4) 

where  is a spherical harmonic.   

  

 

 



Table 1.  Hydrogenic wavefunctions 

  

 
 

where Z is the nuclear charge, a0 is the radius of the first Bohr orbital, and σ = Zr/a0.  A 
more convenient function for computational study is the Slater type orbital which has no 
nodes and has an adjustable parameter, ξ, in the exponent. 

            (5) 

However, certain integrals are much more efficiently evaluated within a computational 
program if we use Gaussian functions. 

                     (6) 

In order for these Gaussian functions to approximate the Slater type functions it is useful 
to sum up several Gaussian functions with the different exponents, for example: 



                                       (7) 

  

where: 

                    (8) 

The above example illustrates the STO−3G (i.e., Slater-type orbitals-3 Gaussians) basis 
set since the wavefunction for the atomic orbital is formulated from the sum of 3 
Gaussians.  Basis sets are groups of functions with particular parameters that are used to 
approximate the atomic orbitals that make up the molecular wavefunction.  The more 
functions and flexibility built into the basis set the better the description of molecular 
electronic properties but the more time the calculation will require.  As you will soon see 
even fairly small molecules will take substantial time to compute molecular properties 
for. 

  

TABLE 2.  Exponents and coefficients for 1s STO-3G 

i α d 
1 0.1688 0.4446 
2 0.6239 0.5353 
3 3.425 0.1543 

  

Analyzing approximate radial functions: 
Our description of the molecular orbitals is thus in terms of a sum of atomic 

orbitals each of which is described by a sum(s) of Gaussian functions.  That is the ith 
molecular orbital, Ψi, is described as: 



                                                                           (9) 

where Φj is one of the M atomic orbitals used. 

          The STO−3G basis set is useful for some calculations but is not flexible enough to 
describe the molecular properties of most molecules with reasonable accuracy.  This 
basis set describes all atomic orbitals of a particular atom in an identical manner.  This 
means that the three p−orbitals on carbon are treated identically.  Thus those atomic 
orbitals participating in π bonding have the same spatial extent as those atomic orbitals 
involved in σ bonding.  The atomic orbital involved in π bonding should be much more 
diffuse.  This difficulty is overcome by the use of basis sets with Gaussian terms 
describing Slater orbitals with two different exponents and thus one of smaller size and 
one of larger extent.  The computational program then optimizes the mixture of these two 
components to develop an orbital with a more appropriate size.  These basis sets are 
called double zeta (ζ) because of the two different exponents on the Slater type orbitals.  
The 6−31G basis set uses six Gaussian functions to describe the core orbitals and the 
valence orbitals are each made up of combination of a smaller Slater type orbital (larger 
exponent, ζ, equation 5) described by three Gaussian functions and a larger Slater type 
orbital described by only a single Gaussian function. 

          Determine the number and type of basis functions (each Slater type orbital) used to 
describe each atom in H2O using the 6−31G basis set.  How many total Gaussian 
functions? 

          Answer:  Each hydrogen has one smaller orbital described by a linear combination 
of three Gaussian functions and a second larger orbital described by a single Gaussian.  
The oxygen 1s orbital is described by a linear combination of six Gaussians.  The 2s and 
the three 2p oxygen orbitals are each described by the 31G double zeta basis set. 

  

TABLE 3.  Number of Basis Functions and Gaussians for 6−31G H2O 

Atom Basis Functions Gaussians 
H 2 4 
O 9 22 

Total 13 30 

  



          The time required for a calculation is a steep function of the number of basis 
functions so careful choice must be made for each problem. 

          There are two other types of functions that may be added to a basis set to better 
describe molecular electronic structure.  The first is polarization terms that amount to the 
addition of orbitals with higher angular momentum (d orbitals for second row elements).  
These orbitals provide flexibility in the spatial distribution of the electron.  This addition 
is denoted by a “(d)” or * added to the basis set specification (i.e. 6−31G(d) or 6-31G*) 
and amounts to the addition of 6 basis functions each described by a single Gaussian.  
Additional very diffuse functions (small ζ) can also be added by adding a “+” sign or a 
second * to the designation (i.e. 6-31+G(d) or 6-31G**).  
 
          These calculations fail to account for the correlated movement of individual 
electrons within an atom.  The electrons only “see” each other through an average effect 
within the approximations of this theory.  This unquantified effect is known as electron 
correlation and can be accounted for approximately.  Calculations which attempt to 
include correlation effects require even more computational time but often lead to more 
accurate electronic properties.  Several computational models which include some 
treatment of electron correlation will be explored. 
 
          In this investigation we will compare different levels of theory to our recent 
experimental results on HCl and we will then attempt to apply our new found working 
knowledge of this type of calculation to other problems of interest. 

  

Computational study of H2 and beyond: Methodology 
          We will use the computational program suite Gaussian 03 with the graphical 
interface WebMO.  All of these programs are resident on Slater, the LINUX 
computational server.  (See Gustavus Computational Server and Gustavus Computational 
Resources for helpful information and links.) For each computation we must define a 
computational model in terms of the basis set we will use and the level of theory we will 
use.  The energies resulting from these calculations are all expressed in Hartrees, Eh.  Eh 
= 2.1947463 x 105 cm−1 = 4.359748 x 10−18 J.     

http://www.gaussian.com/
http://www.gac.edu/oncampus/academics/chem/pchem/Gaussian%2098.htm
http://www.gac.edu/oncampus/academics/chem/pchem/Compute.htm
http://www.gac.edu/oncampus/academics/chem/pchem/Compute.htm


Gaussian 03 example input file for acetylene 

#HF 3-21G GFPRINT OPT Pop=Reg 

  

Acetylene 

  

0 1 

  C  

  C    1 rcc  

  H    1 rhc    2 a1 

  H    2 rhc    1 a1    3 dihed 

Variables: 

rcc= 1.2024 

rhc= 1.0625 

a1= 180.00 

dihed= 0.00 

 ________________________________________ 

           The first line is known as the route.  It describes the calculations to be performed.  
In this case we are performing a Hartree-Fock (HF; SCF-LCAO) calculation with the 3-
21G basis set.  We are requesting that the coefficients and exponents of the Gaussian 
functions we are using be printed (GFPRINT).  We want the geometry set out below to 
be optimized within this model chemistry.  The final keyword requests that the 
coefficients on the atomic orbitals making up the molecular orbitals be printed in the 
output.  A blank line is left followed by the title which we chose. After another blank line 
the molecular charge (0 in this case) followed by the spin multiplicity of the state (1 in 
this case to denote singlet meaning that all electrons are paired).  The very next line 
begins the definition of the molecular geometry.  The first atom listed is numbered 1 and 
the rest of the geometry is in Z-matrix form which uniquely defines the geometry in 
terms of variables specifying bond distances, bond angles, and dihedral angles.  At the 
end these variables are given initial values.  Each bond length is defined relative to other 
atoms.  For hydrogen atom #3, the bond distance is defined relative to carbon atom 1 
which it is connected to.  The bond angle is defined relative to carbon atom #1 and 
carbon atom #2.   



          For an optimization (OPT) these values will be optimized whereas in a single point 
calculation (SP) the energy is determined at the geometry specified.  In a SCAN type of 
calculation all variables are fixed except those that are given a starting point, the # of 
points to calculate, and an increment.  All distances in Gaussian are given in Angstrom 
and all angles are specified in degrees. 

 Systems Under Investigation 

1. H2  

As an initial investigation, we will explore the H2 molecule using Gaussian 03.  For H2 
we know the energy of the separated atoms (r = ∞).  The experimental parameters we will 
compare our calculation to are listed in the table below.    

TABLE 4.  Experimental properties of H2

re 0.7416 x 10−10 m 
 4401 cm−1

BBe 1822.7381 GHz 
Binding Energy 0.174 Eh

Energy of H atom −1 Eh/2 = −109737.315 cm−1

  
We will use Gaussian 03 on the Linux computational server.  For more detailed 
information about the specifics of carrying out these calculations on this computer system 
see:  

Gustavus Gaussian Computational Server

 Gaussian Web Site

In lab:  
 

1. In your notebook, prepare an (handwritten) input file for H2.  
2. In WebMO, perform a geometry optimization using the HF/STO-3G basis 

set. Does your input file match the one you wrote in your notebook?  
3. While you are examining the output, you should start another calculation in which 

you use the optimized bond length from above in a frequency calculation (FREQ 
keyword) and the same computational model.  This calculation will give you the 
vibrational frequency which you can compare with the above as well as 
thermodynamic properties.   

4. For your first calculation, how do the results of this calculation compare with the 
above table of data?  How large is the binding energy predicted by the above 
calculation?  Examine the molecular orbitals and the contributing atomic orbitals.  
Record the time required for each calculation by examining the end of the output. 

http://www.gaussian.com/


5. As a third calculation, do a single point (SP) calculation at a large internuclear 
separation and compare the SCF energy with that of two infinitely separated 
hydrogen atoms. 

6. Do a fourth calculation in which you use a larger basis set to optimized the 
geometry and calculate the frequency.  Compare these results.  Discuss the form 
of the basis functions. 

2. HCl 

         We will next examine H35Cl and make comparisons to our experimental data.  HCl 
is also a diatomic molecule like H2 but the larger chlorine molecule makes the calculation 
of molecular properties both more time consuming and increases the demands on the 
computational model.  We will explore several models and how well they reproduce the 
experimental data on HCl.  Start with a small basis set HF model of your choice.  Again, 
write out an example input file in your notebook. Set up your calculation and Z−matrix 
within Gaussian 03 (WebMO).  How many basis functions and Gaussians does your 
model use? (Note in notebook.) You want to optimize the geometry and calculate the 
vibrational frequency at this geometry.  Compare the rotational constant, internuclear 
separation, and vibrational frequency with your experimental value.  Record the 
calculation time from the end of your output.  You will do a second calculation on HCl in 
which you will select one of the larger basis set models in Table 5.  Choose your model 
from the table posted in the lab so that we will get a variety of results to compare.  Once 
you complete these two calculations, post your results in an Excel spreadsheet that 
includes, theoretical model, calculation time, and number of basis functions and Gaussian 
functions.  These overall results should be discussed in your report (due after 
computational labs are all done).  A plot of calculation time versus accuracy should be 
constructed based on this data.  Which model is most time effective for handling this 
problem? 

 Table 5: Theoretical Models for HCl Calculation. 

Basis Set # Basis 
functions 

HF MP2 QCISD(T) 

6−31G(d)         
6−311+G(d,p)         

 

Week #2 

1. We will next examine the internuclear potential of HCl.  We can roughly approximate 
this potential as a harmonic potential.  We will examine the intermolecular potential with 
Gaussian 03 and then compare this result with a simple harmonic potential with a force 
constant, k, based on your experimental data.  In making this comparison you can 
arbitrarily set the minimum of the calculated potential at zero.  Within Gaussian the 
SCAN keyword can be used to examine the energy as a function of internuclear 



separation.  Start with the HF/3−21G(d) model and create the appropriate Z−matrix 
within Gaussian 03.  When using the SCAN keyword the internuclear separation 
parameter must have a starting point, number of points at which we want the energy 
calculated, and the increment.  About 30 total points from about 0.75 angstroms to about 
4.5 angstroms should make the form of the internuclear potential clear (This calculation 
may take an hour or more).  A table of the energies and distances is included at the end of 
the Gaussian 03 output and can be put into another text file and then imported into 
Sigmaplot for plotting. 

2. Modeling Polyatomic Systems 
WebMO coupled to Gaussian 03 will be used to investigate the properties of a 

system of your own choice. Since computational time can go up as the number of 
electrons to the 4th(!) power, it is best to confine our study to molecules of 20 atoms or 
less.  Before beginning your calculations include a picture of the molecule in its 
optimized ground state geometry in your notebook.  The goals of each investigation is: 

1.    Determine equilibrium geometry at least three levels of theory (semiempirical: 
AM1 and two or more ab initio levels of theory.)  Tabulate important bond 
lengths, angles, dihedral angles and where possible compare with the 
literature.   

2.     Examine and discuss a particular property for each of the systems.  For 
example, some of the suggested systems below have unusual pKa's.  This can 
be examined by comparing the energy of the species and its deprotonated 
form.  Comparison with some other related but known system may be useful 
to get good numbers.  The absolute numbers from calculations are sometimes 
not as good as the numbers we get from theory.  If the system of interest 
shows particular reactivity at a particular site then the electron density or 
charge at this site might be examined.   

3.    The results of the calculation should be carefully tabulated including structures 
for important species (intermediates, etc.).  These results should be discussed 
in your report. 

Some Suggested Systems:  
1. 2-aminophenol exhibits an unusually low pKa of ~4.  This effect may be 

attributed to stabilization of the deprotonated form by an intramolecular hydrogen 
bond.  See: 

Sobolewski, Andrzej L. and Domcke, Wolfgang.  
Photophysics of Malonaldehyde: An ab Initio Study . 
Journal of Physical Chemistry A. 1999; 103 :4494-4504. 

2. Water clusters are examined in some detail by Gordon et al. See:  
Gordon, Mark S.; Freitag, Mark A.; et al.  The Effective 
Fragment Potential Method: A QM-Based MM Approach 
to ModelingEnvironmental Effects in Chemistry. Journal of 
Physical Chemistry A . 2001; 105:293. 



3. Cysteine exhibits an interesting series of equilibria for deprotonation.  The 
relative values of these equilibrium constants are not fully quantified. 

4. 2-naphthol exhibits a large change in pKa upon electronic excitation.  See: 
Richard Knochenmuss; Volker Karbach; Claudia 
Wickleder; Stephan Graf, and Samuel Leutwyler.  
Vibrational-Energy Redistribution and Vibronic Coupling 
in 1-Naphthol·Water Complexes . Journal of Physical 
Chemistry A. 1998; 102 :1935-1944. 
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