
Chemistry 372 Gustavus Adolphus College 
 

LAB #2: FTIR (ROTATIONAL/VIBRATIONAL) SPECTRSCOPY OF HCl/DCl 
 
Abstract 
High resolution infrared absorption spectra of gaseous HCl and DCl are collected and 
used to explore the vibrational and rotational energy levels of the two gases.  
 
Related Reading 
McQuarrie and Simon, Physical Chemistry: A Molecular Approach, Chapter 13, §13-2 to 
13-5, “Molecular Spectroscopy,” pp. 497-507 and Chapter 5: “The Harmonic Oscillator 
and the Rigid Rotator: Two Spectroscopic Models,” pp. 157-178 
 
Background 
The vibrational-rotational spectrum results when rotational transitions accompany 
vibrational transitions in a molecule.  One classical example of this is a spinning ice-
skater.  As the skater pull her arms closer to her body, she spins faster.  Similarly, if you 
imagine a diatomic molecule, you can see that a decrease in bond length (a vibrational 
transition) results in faster rotations.  Infrared spectroscopy allows you to observe 
different rotational transitions that occur within a single vibrational transition, and from 
this data, you can elucidate some important physical information about the molecule. 
 
Vibrational-rotational spectroscopy involves two precisely solvable problems:  the 
harmonic oscillator (vibrations) and the rigid rotor (rotations) [see McQuarrie, Chapter 
5].  Here, we will review each separately and then see how they are combined to explain 
the vibrational-rotational spectrum. 
 
Vibrations 
If an object can move away from its equilibrium (lowest energy) position against a force 
proportional to the distance it moves, it is called a harmonic oscillator.  A classical 
harmonic oscillator (such as a mass attached to a spring) can be described by Hooke’s 
Law, which states that the force of a stretched spring is equal to the displacement (Δx) 
times the force constant (k). 
 
     F = -kΔx       (1) 
 
Figure 1 shows a spring at rest (1a) and then stretched to some position where a force is 
now present (1b).  If we call the resting position xo and the final position x, then 
displacement, Δx, is equal to x – xo. 
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The potential energy of this system is given by minus the integral of equation (1) from xo 
to x.  Note the substitution Δx = x – xo. 
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A chemical bond between two atoms vibrates as a harmonic oscillator.  The equilibrium 
bond length (Re) is the resting position and any bond length shorter or longer than Re is 
like the stretched position of the spring.  This is easiest to see in a qualitative potential 
energy diagram (see Figure 2). 
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At Re, the potential energy, V(R), is at its minimum.  When R is longer than Re, the 
potential energy increases, approaching zero as the bond length goes to infinity.  When R 
is shorter than Re, the potential energy also increases, approaching infinity as the bond 
length goes to zero.  To find a simple equation to express V(R), we must limit the 
molecule to a state where the bond length spends most of its time near Re.  In this part of 
the curve, V(R) can be approximated by a parabolic function: 
 
    V = ½ k(R – Re)2     (3) 
 
where R – Re is the displacement from equilibrium bond length.   
 
Using this mathematical model, we have approximated the potential energy function 
shown in Figure 2 as a parabola.  As you can see in Figure 3, the harmonic oscillator 
approximation is only valid at values near Re.  As the curve moves away from Re, the 
function must be corrected to account for anharmonicity. 
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The harmonic oscillator approximation can also be evaluated using quantum mechanics.  
The quantum mechanical solution to the Schrödinger equation for a harmonic oscillator 
gives a series of quantized energies with the following solutions: 
 
    Evib = hν0(v + ½) (v = 0, 1, 2, …)  (4) 
 
where v is the vibrational quantum number and 
 
    ν0 = ½π (k/m)½      (5) 
 
ν0 is called the vibrational frequency.  k is the force constant and m is the mass of the 
atom.  Different values of v designate different “vibrational states” of the system, and 
give rise to different energies, all of which are multiples of ν0. In the case of a 
heteronuclear diatomic molecule, equation (5) must be adjusted to accommodate two 
different masses.  The reduced mass, μ, is substituted for m. 
 
    μ = mAmB/(mA + mB)     (6) 
 
where mA is the mass of one atom and mB is the mass of the other.  The vibrational  
frequency is then defined: 
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In wavenumbers, the energy, )(νG , and the vibrational frequency, 0

~ν , are:  
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Transitions among vibrartional levels are subject to the selection rule that Δv = ±1 and 
the dipole moment of the molecule must vary during a vibration.  
 
 
 



Rotations 
While the harmonic oscillator model considers a bond like two masses connected by a 
flexible spring, the rigid rotor model considers a bond like two masses connected by a 
rigid bar, like a dumbbell.  The dumbbell rotates as a unit, and the energies of rotation are 
also solvable by quantum mechanics [see McQuarrie, Chapter 5]: 
 
    Erot = BeJ(J + 1) (J = 0, 1, 2, …)  (9) 
 
Here, J is the rotational quantum number and Be is the rotational constant and is defined: 
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where μ is the reduced mass (as defined in equation (6)) and Re is the equilibrium bond 
length for a vibrating diatomic molecule (if the rotor were truly rigid, the bond length 
would be constant).   
 
In wavenumbers, the energy, , and the rotational constant, )(JF B~ , are:  
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Rotational transitions are governed by the selection rule ΔJ = ±1 and the molecule must 
have a permanent dipole moment.  
 
Vibrations and Rotations 
When we consider both rotations and vibrations simultaneously, we take advantage of the 
fact that these transitions occur on different timescales.  Typically, a molecular vibration 
takes on the order of 10-14 s.  A molecular rotation is normally much slower, taking on the 
order of 10-9 or 10-10 s.  Hence, as a molecule rotates one revolution, it vibrates many, 
many times. Since the vibrational energies are large compared with the rotational 
energies, the appropriate energy level diagram is: 
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Figure 4 

 



The spectroscopic transitions you will observe in this experiment correspond to arrows 
pictured in the diagram.  The spacing between vibrational (v) energy levels is large 
compared to the spacing between rotational (J) energy levels.  As a result, all the peaks 
you observe will be of the vibrational transition Δv = +1.  You will need to assign the 
rotational transitions based on the selection rule, ΔJ = ±1.  This simplifies your spectral 
assignment, since it rules out any transitions which don’t follow the rule (such as J = +2). 
 
There is an interaction between the rotations and vibrations, causing B~  to be dependent 
on v. Thus, the total energy in the rigid-rotator harmonic-oscillator model is: 
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where v = 0, 1, 2 … and J = 0, 1, 2… 0
~B is the rotational constant when v = 0 and 1

~B  is 

the rotational constant when v = 1. It is often useful to relate vB~  to B~ , allowing a direct 
calculation of Re: 
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 The energy of observed transitions, obsν~ , can be calculated from Eq (12): 
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Substituting Eq (13) into Eqs (14) and (15), the final expressions for the two types of 
transitions are determined: 
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Equations (16) and (17) can be simplified by substituting n = J+1 in equation (16) and n = 
-J in equation (17), the result is an identical equation:  
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Equation (18) allows one to plot the results for both branches on one graph. Fitting the 
data to a quadratic formula will allow one to determine values for B~ and eα~ . From these 
values, 0

~ν , , and k can be determined from equations found above.  eR
 
Example Spectra (and more info) 
Figure 5 shows the vibrational-rotational infrared spectrum of HCl.  By convention, a 
series of transitions for which ΔJ = -1 is called a P branch, and a series of lines for which 
ΔJ = +1 is called an R Branch.  An R branch transition originating in state J and 
terminating in state J+1 is written “R(J)”, and a P branch transition originating in state J 
and terminating in state J-1 is written “P(J)”.  (Q branches, in which ΔJ = 0 can occur in 
some cases, but not in the vibrational-rotational spectra of diatomic molecules, so we will 
ignore them.) The gap between the R branch and P branch corresponds to 0

~ν , and the 
separation of the lines in both branches is ~ B~2 . Example 13-3 from McQuarrie gives an 
example of using this information to predict the spectra of diatomic gases.  



 

 

Figure 5 

 
If one examines Figure 5 closely, it becomes apparent that the lines of the R-branch are 
more closely spaced than the P-branch lines. In addition, if one would compare the 
experimental values obtained for 0

~ν and B~ with those calculated by the above equations, 
some fairly severe discrepancies would be apparent, especially at increasing values of J 
and v. The discrepancies basically arise from three factors: the increase in vibrational 
amplitude with increasing vibrational states (this is why B~  depends on v), the reality that 
chemical bonds are not truly rigid (i.e., the bonds stretch slightly upon rotation), and the 
anharmonicity of the internuclear potential energy well. Mathematically, there are several 
additions made to Eqs (13) and (14) to account for these discrepancies. §13-3, 13-4 and 
13-5 of McQuarrie explain these mathematical terms and show how they are obtained.  
 
With these additional terms, the total energy becomes 
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where v and J are quantum numbers equal to 0, 1, 2, …, and is the frequency of the 
molecule vibrating around the equilibrium internuclear separation, Re. is the 
centrifugal distortion constant and 

D~

ex~  is an anharmonicity constant. Refer to McQuarrie 
for more detailed information. When including the centrifugal distortion constat, , Eq 
(18) becomes: 
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Procedure 
Safety and Other Concerns: Follow general lab safety rules. The KBr windows of the IR 
cell are hydroscopic. Do not touch them and keep the cell in the dessicator when not in 
use.  
 
In the Lab: HCl (and DCl) gas is placed in a cell with KBr windows.  The KBr windows 
are used because glass absorbs strongly in the infrared region.  We will use the Nicollet 
FT-IR to record the IR spectrum of HCl (and DCl). More details will be available in lab. 
 



Analysis:    
All aspects of the data analysis are described in the Background section.  Make sure you 
understand how the equations are derived and what the constants eα~ , B~ , νo, Re, and k 
represent.  (You will need to justify your calculations in your lab report). 
 

• Assign each peak to a specific rotational transition (R(0), P(1), …) 
• Using the index, n (P branch: n = - J ; R branch n = J + 1), tabulate the values of n 

and the corresponding  (in wavenumbers) of the transition. 
• Plot )(nobsν  against n using Eq. (18).  Look for outliers. 

• Use Sigmaplot or other program and Eq (18) above to get ν0, (2 B~  - 2 eα~ ), B~ , and 

eα~  for all isotopic species. Repeat with Eq (20) to get ν0, (2 B~  - 2 eα~ ), B~ , eα~ , 
and . Compare the values obtained from each fit.  D~

• Use B~ and eα~ , and any combination of equations above, to find Re and k for HCl. 
Compare Re and your other constants to the latest data at NIST Webbase 
(http://webbook.nist.gov/chemistry/). 

• Calculate the moment of inertia for HCl. 
• Using the two isotopic peaks (H37Cl and H35Cl or H35Cl and D35Cl) compute the 

ratio of B~  for the two isotopes.  Use Table 1 for correct isotopic masses. Which 
isotopic substitution (37Cl for 35Cl or D for H) affects B~  more?  

• Determine the temperature of the sample using the Boltzmann equation and the 
peak in the rotational contour (what is the most populated rotational state, Jmp, and 
how does this relate to the temperature). [Hint: See McQuarrie §18-5] 

• Simulate a spectrum using 1 cm-1 resolution and Gaussian functions to simulate 
the individual lines.  Do this at two temperatures 600 K and 300 K.  Use mathcad 
file gaussian_spectrum.mcd as a template for this calculation. 
(www.gustavus.edu/academics/chem/pchem/gaussian_spectrum.mcd)  

  
Table 1 

 atomic mass (in amu) isotopic abundance (%) 
1H 1.007825 99.985 
2H 2.0140 0.015 

35Cl 35.968852 75.77 
37Cl 36.965903 24.23 
79Br 78.918336 50.69 
81Br 80.916289 49.31 
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