Postulates of QM

Postulate 1

The state of a quantum-mechanical system is completely specified by a function $\psi(x)$ that depends upon the coordinate of the particle. All possible information about the system can be derived from $\psi(x)$. This function, called the wave function or the state function, has the important property that $\psi^*(x)\psi(x)$ dx is the probability that the particle lies in the interval dx, located at the position x.

Recall that wavefunctions that satisfy $\int_{allspace} \psi_n^*(x)\psi_n(x)dx = 1$ are said to be normalized.

Only normalizable functions are acceptable as wavefunctions. So functions must:

- 1. be single-valued
- 2. be continuous
- 3. be finite
- 4. not diverge as $x \rightarrow \infty$

Postulates of QM

To every observable in classical mechanics there corresponds a linear operator in quantum mechanics.

Postulate 3

In any measurement of the observable associated with the operator, \hat{A} , the only values that will ever be observed are the eigenvalues a_n , which satisfy the eigenvalue equation: $\hat{A} \psi_n = a_n \psi_n$.

Postulate 4

If a system is in a state described by a normalized wave function $\psi(x)$, then the average value of the observable corrresponding to \hat{A} is given by:

$$< a >= \int \psi^*(x) \widehat{A} \psi(x) dx$$

Postulates of QM

4-3

Postulate 5

The wave function, or state function, of a system evolves in time according to the time-dependent Schrödinger equation:

$$\widehat{H}\Psi(x,t) = i\hbar \frac{\partial \Psi(x,t)}{\partial t}$$

Separation of Variables: Let $\Psi(x,t) = \psi(x)f(t)$

$$\frac{1}{\psi(x)}\hat{H}\psi(x) = \frac{i\hbar}{f(t)}\frac{df(t)}{dt} = E$$

Time independent Schrödinger Equation: $\hat{H}\psi(x) = E\psi(x)$

Time dependent Schrödinger Equation:

$$\frac{df(t)}{dt} = -\frac{i}{\hbar} Ef(t)$$