MCS 119

Derivative Review II

1. The thickness of a glacier (in meters) is given by $f(t)=700-3 t^{2}$ where t is measured in years since 1995. Find $f(5)$ and $f^{\prime}(5)$. Using units, explain what each means in terms of the glacier.
2. Find the equation of the tangent line to $f(x)=x^{3}$ at the point where $x=2$.
3. If $f(t)=2 t^{3}-4 t^{2}+3 t-1$ find $f^{\prime}(t)$ and $f^{\prime \prime}(t)$.
4. On what intervals is the graph of $y=x^{4}-4 x^{3}$ both decreasing and concave up?
5. The figure below is of the derivative $f^{\prime}(x)$. Use it to answer the following questions.

(a) On what interval(s) is $f(x)$ increasing?
(b) At what points (if any) does $f(x)$ have a local maximum?
(c) At what points (if any) does $f(x)$ have a local minimum?
(d) On what interval(s) is $f^{\prime \prime}(x)>0$?
(e) On what interval(s) is $f(x)$ concave up?
6. Find the critical points of $f(x)=24 x^{2}-x^{3}$ and classify each of them as a local maximum, minimum, or neither.
7. The sum of 2 positive numbers is 24 . Find the values that maximize the first times the square of the second.
