MCS 119

Calculus with exponential functions

1. Compute the derivatives of the following functions.
(a) $y=e^{-x}$
(b) $y=e^{\sqrt{x}}$
(c) $y=e^{x} x^{e}$
(d) $y=e^{\left(x^{2}+1\right) /(3 x-1)}$
(e) $y=\frac{e^{2 x}+1}{e^{x}-1}$
(f) $y=\left(e^{x^{3}-2 x+1}+x^{2}-1\right)^{3}$
(g) $y=e^{3}$
(h) $y=\left(e^{x^{2}+1}\right)^{4}$
2. Evaluate the following integrals.
(a) $y=\int_{0}^{2} e^{-x} d x$
(b) $y=\int x^{2} e^{x^{3}} d x$
(c) $y=\int e^{x} e^{e^{x}} d x$
(d) $y=\int\left(e^{x}+1\right)\left(e^{x}+x\right)^{4} d x$
3. Find the critical points of $f(x)=e^{x^{3}-3 x}$ and classify them as local max, local min, or neither.
4. Find the area bounded by the graph of $y=x e^{-x^{2}}$ and the x-axis from $x=0$ to $x=4$.
5. Is the graph of $y=e^{-x^{2}}$ concave up or concave down at $x=0$? What about at $x=5$?
6. Use implicit differentiation to compute $d y / d x$ if $x e^{x}-e^{y}=0$.
7. If I deposit $\$ 1000$ in the bank earning 3 percent interest compounded continously then the amount of money I have in year t is given by $A=1000 e^{.03 t}$ At what rate (in dollars per year) is my investment increasing when $t=10$?
