Worksheet on Related Rates (Section 2.7)

Steps for Solving Related Rates Problems

1. Make a drawing of the situation if possible.
2. Use letters to represent the variables involved in the situation - say x, y.
3. Identify all rates of change given and those to be determined. Use calculus notation $\frac{d x}{d t}, \frac{d y}{d t}$, etc, to represent them.
4. Determine an equation that both
a. Involves the variables of step 2 and
b. Will involve the derivative of step 3, when differentiated
(You may need some geometrical formulas to do this)
5. Differentiate (by implicit differentiation) the equation of step 4
6. Substitute all known values into the differentiated equation
7. Use algebraic manipulation, if necessary, to solve for the desired unknown rate or quantity.

Example 1. The radius of a spherical balloon is increasing by $2 \mathrm{~cm} / \mathrm{sec}$. At what rate is air being blown into the balloon at the moment when the radius is 10 cm ? Give unit in your answer.

Example 2
A kite is flying 150 m high, where the wind causes it to move horizontally at the rate of 5 m per second. In order to maintain the kite at a height of 150 m , the person must allow more string to be let out. At what rate is the string being let out when the length of the string already out is 250 m ?

Example 3
(a) Water runs into a inverted conical tank at the rate of 7 cubic feet per minute. The radius of the water's surface is always half the height of the water. How fast is the water level rising when the water is 2 feet deep?
(b) Suppose water is leaking out of the tank at a rate of $2 \mathrm{feet} / \mathrm{sec}$ in (a). How fast is the radius of surface of the water increasing when the water is 2 feet deep?

Example 4
A lighthouse is on a small island 3 km away from the nearest point P on a straight shoreline and its light makes 4 revolutions per minute. How fast is the beam of light moving along the shoreline when it is 1 km from P ?

Example 5
A 1.6 m tall woman is walking away from a street light which is at the top of a 5 m pole with a speed of $2 \mathrm{~m} / \mathrm{sec}$ along a straight path.
(a) How fast is the tip of her shadow moving when she is 15 m from the pole?
(b) How fast is her shadow lengthening at that point?

