Mass Spectrometry in Five Parts
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Figure 2- a) Increasing abundance in the total ion current (TIC) is represented as it changes over
time in a chromatographic-like trace. b) Each digital slice of a peak represents the ions at that
time making up the ion current often referred to as a profile or continuum acquisition. The x or
‘time’ axis is now the mass-to-charge ratio (m/z) the ability to resolve neighboring ions in the
spectrum (such as isotopes) is readily seen. ¢) A profile spectrum is often reduced to a ‘stick
plot’ represented by centroids dropped from each peak apex reducing the size of the stored file
in favor of the increased resolution information.

Balogh, M. (2009) The Mass Spectrometry Primer, Waters Corporation.
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Figure 1-1. This conceptual illustration of the mass Spectrometer shows the major components of

mass spectrometer, i.e., sample inlets (dependent on sample and ionization tec

hnique: ion

source (origin of gas phase ions); m/z analyzer (portion of instrument responsible for
Separation of ions according to their individual m/z values); detector (generates the signals
that are a recording of the m/z values and abundances of the fons); vacuum system (the
components that remove molecules, thereby providing a collision-free path for the ions
from the ion source to the detector); and the computer (coordinates the functions of the

individual components and records and stores the data),

atso ) I .; ) . .

Interpretation, 4th ed.; John Wiley and Sons, 2007.



Early 1900s 1980s 2013

Replica of an early mass spectrometer &l

http://en.wikipedia.org/wiki/Mass sp
ectrometry

The instrument Fenn and his colleagues &
used to develop ESlis on display at the
Chemical Heritage Foundation Museum in
Philadelphia, PA

http://www.waters.com/waters/en US/AC

http://en.wikipedia.org/wik
i/John Fenn (chemist)

QUITY-QDa-Mass-Detector-for-
Chromatographic-
Analysis/nav.htm?cid=134761404&locale=e
n US



http://www.waters.com/waters/en_US/ACQUITY-QDa-Mass-Detector-for-Chromatographic-Analysis/nav.htm?cid=134761404&locale=en_US
http://en.wikipedia.org/wiki/John_Fenn_(chemist)
http://en.wikipedia.org/wiki/Mass_spectrometry
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Watson, J. T.; Sparkman, O. D. Introduction to Mass Spectrometry: Instrumentation, Applications, and Strategies for Data
Interpretation, 4th ed.; John Wiley and Sons, 2007.
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Flgure 1-26.  MALDI mass spectrum of phosphapeptide before (A) and after
(B) treatment with trypsin in an effort to map the location of the
phosphate group. (C): MALDI spectrum of tryptic digest after

treatment with phosphatase. Reprinted from Liao P-C, Leykam J, Andrews PV,
Gage DA, and Allison J “An approach fo locate phospharylation sftes in proteins by MALDI”
‘Anal. Biochem. 1994, 219, 9-20, with permission from Academic Press.

Watson, J. T.; Sparkman, O. D. Introduction to Mass Spectrometry: Instrumentation, Applications, and Strategies for Data
Interpretation, 4th ed.; John Wiley and Sons, 2007.
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Figure 1-27. Plot of excess CO, beyond natural abundance in the breath
of normal vs cystic fibrosis patients following an oral dose

(10 mg kg™’ ) of 1-"*C-trioctanoin. Reprinted from Barr RG, Perman JA,
Schoeiler DA and Watkins JB ‘Breath tests in pediatric gastrointestinal disorders: new
diagnostic opportunities” Pediatrics 1978, 62(3), 393401, with permission from the
American Academy of Pediatrics.

Watson, J. T.; Sparkman, O. D. Introduction to Mass Spectrometry: Instrumentation, Applications, and Strategies for Data
Interpretation, 4th ed.; John Wiley and Sons, 2007.



Centroid vs. Profile Data

Mass Accuracy

Mass Resolution

Resolving Power

Monoisotopic Mass
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Figure 12.6 from Rubinson and Rubinson, Contemporary Instrumental Analysis
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Figure 2-46. Segment of mass spectrum in the region of the nominal m/z
35 showing a resolving power >1,000,000 (FWHM) using
FTMS. The peaks represent the positive and negative lons of
*3CI that have a difference in mass equal to the mass of two
electrons (~0.15 millimass units). The instrument was

- switched from positive-ion detection mode to negative-ion

detection mode during the scan between the two peaks.
AET2 BE7.7 mfz Cerrtosy of yol g

Figure 2-47. (Top) ESI mass spectrum of ubiquitin obtained with an FTICR
mass spectrometer at low resoiving power (top) and at high
resolving power (Bottom) in the vicinity of m/z 857 (peak C in

top spectrum). Data provided by i. Jon Amster, Daparment of Chamisiry,
Uinivarsify af Goorgia, Athans, G4, LISA.

Watson, J. T.; Sparkman, O. D. Introduction to Mass Spectrometry: Instrumentation, Applications, and Strategies for Data Interpretation, 4th ed.; John Wiley
and Sons, 2007.



What else does direct charge-state determination facilitate?
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Resolving Power in FT-ICR and Orbitrap Mass Spectrometry
can you ever have too much peak capacity?
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FT-ICR and Orbitrap MS at m/z = 600
Bringing Clarity to Complex Mixture Analysis
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Part Il — lonization Methods



Method

Acronym

lonization Due to...

Advantages

Disadvantages

Main Applications

Electron

Chemical

Photo

Electrospray

Matrix
Assisted Laser
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1-16. El mass spectrum of acetone (left) and prapfonaldehy_
Flgure (right). Both compounds have an elemental composition of
C;H; O and a nominal mass of 58.

Watson, J. T.; Sparkman, O. D. Introduction to Mass Spectrometry: Instrumentation, Applications, and Strategies for Data
Interpretation, 4th ed.; John Wiley and Sons, 2007.



Integer Exact Percent X+1 X+2
Type Element Symbol Mass' Mass® Abundance Factor® Factor®

X Hydrogen H 1 1.0078 99.99

Dor 2 2.0141 0.01

H
X+1  Carbon 26 12 12.0000 98.91

¥c 13 13.0034 11 1.1ng 0.0060n:2
X+1  Nitrogen N 14 14.0031 99.6

N 15 15.0001 0.4 0.37ny
X+2  Oxygen %0 16 15.9949 99.76

‘ (e} 17 16.9991 0.04 0.04ng

39 18 17.9992 0.20 0.20no
X Fluorine F 19 18.9984 100
X+2  Silicon Bgi 28  27.9769 92.2
: g 29 28.9765 4.7 5.1ng

g 30 299738 3.1 3.4ng
X Sodium Na 23 22.9808 100
X Phosphorus P 31 309738 100
X+2  Sullur &g 32 319721 95.02

%Bg 33  32.9715 076  0.8ng

g 34 33.9879 4.22 4.4ng
X+2  Chlorine %0 35 34.9689 75.77

ol 37  36.9659 24.23 32 5ng
X+2 Potassium %K 39 38.9637 93.26

40K 40  39.9640 0.013  0.012n¢

K 41 409618 6.74 7.22n¢
X+2 Bromine Bt 79  78.9183 50.5

By 81 809163 49.5 98.0ng,
X lodine | 127 126.9045 100

The integer mass of the most abundant* naturally occurring stable isotope of an element is the element's
nominal mass. The nominal mass of an ion is the sum of the nominal masses of the elements in its
slemental composition {e.g., CsMsO" has a nominal mass of 58).

The exact mass of the most abundant* naturally occurring stable isctope of an element is the element's
monoisotopic mass. The monoisotopic mass of an ion is the sum of the monoisotopic masses of the
elements in its elemental composition (e.g., CsHsO* has a manoisotopic mass of 58.0417).

Assume X = 100%; X represents the relative intensity of the first peak in a cluster of peaks corresponding
to isotopic variants of a given ion.

The factor is multipiied by the number (n) of atoms of the element present to determine the magnitude of
the intensity contribution for a given isotope. For exampls, the contribution at X+1 due to "*N for an ion
containing three nitrogens would be 0.37 x 3 = 1.11 relative to 100 at X, '

* This may not always be the fowest mass naturally occurring stable isotope of the
element, as is the case with the elements in this table. The fowest mass isofope of Hg
is 196 and the nominal mass isotope is 202, seventh from the lowest mass isotope.

Watson, J. T.; Sparkman, O. D. Introduction to Mass Spectrometry: Instrumentation, Applications, and Strategies for Data Interpretation, 4th ed.; John Wiley
and Sons, 2007.



Watson, J. T.; Sparkman, O. D. Introduction to Mass Spectrometry: Instrumentation, Applications, and Strategies for Data Interpretation, 4th ed.; John Wiley

and Sons, 2007.
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Table 6-1. lonization energy for selected compounds.

lonization energy*
Compound in electron volts (eV)
HsC-NH-CH, 3 8.23
HsC~CHp~NH; | 8.86
H,C~O—CH, | 10.03
H,C=CH, 10.51
HsC—CH, | 11.52

*Data taken from Lias 8G, Bartmess JE, Lisbman JF, Holmes JL, Levin RD, and
Mallard WG, Gas-phase ion and neutral thermochemistry, J. Phys. Chem. Ref. Data,
1988, 17(Suppl. 1).

Watson, J. T.; Sparkman, O. D. Introduction to Mass Spectrometry: Instrumentation, Applications, and Strategies for Data Interpretation, 4th ed.; John Wiley
and Sons, 2007.
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able 6-2. Abundance of melecular ions in mass specira
of seleclted compounds of various structures

and elemental compositions.
Compound Abundance {%XI)

Naphthalene 443
Quinoline =l
n-Butylbanzena B.26
trans-Decalin . B.22
tert-Butylbenzene : 7.00
Alloocimeng 6.40
Diamyl sulfide 3.70
n-Decane 1.41
n-Decyimercaptan 1.40
Diamylamine 1.14
Methyl nonanoate 1.10
Myrcene 1.00
Cyclododecane 0.88
3-Nonanone 0.50
n-Decylamineg 0.50
Diamyl ether 0.33
¢is-cis-2-Decalol 0.08
3-Nonanol 0.05
Linaloaol 0.04
3,3,5-Trimethylheptane 0.007
nr-Dacanal 0.002
Tetrahydrolinalool 0.000

From Bierrann K, Mass Spectrometry: Organic Chemical Applications,
McGraw-Hill, New York, 1962, with permizsion
Watson, J. T.; Sparkman, O. D. Introduction to Mass Spectrometry: Instrumentation, Applications, and Strategies for Data Interpretation, 4th ed.; John Wiley

and Sons, 2007.



Table 7-1. Characteristics of reagent gases for CI.

Predominant Proton | Hydride
Reagent Gas Reactant lons Affinity* (kd mol™")  Affinity (kJ mol ‘]

He/H, HeH" 176 -
H, H 424 1256 : g
CH. CH; 551 1126 o
CH: | 666 1135
H20 H,O* 697 —
CH;CH.CHs CaH 762 1130
CH,OH CHsOH} 762! —
(CHs)sCH (isobutane) ¢,H: 821} 1114
NH; NHJ, (NHa)H", 854 —
{NHg)agH’ o
(CHg)oNH (CHa)oNHj, (CHa)oH", 921 —
CaHaN’
(CHa)sN (CHa)sNH" 9431 —

" Lias 8@, Barimess JE, Liebman JF, Holmes JL, Levin RD, and Mallard WG J. Phys. Chem. Ref, Data 17,
Suppl. 1, 1988,
from reference [1].

* Proton affinity of isobutylene, which is the conjugate base of isobutane. All values converted from keal to k. I

Watson, J. T.; Sparkman, O. D. Introduction to Mass Spectrometry: Instrumentation, Applications, and Strategies for Data Interpretation, 4th ed.; John Wiley
and Sons, 2007.
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Figure 1-22. El mass spectrum of the malonamide (IV) of pentobarbital.

Watson, J. T.; Sparkman, O. D. Introduction to Mass Spectrometry: Instrumentation, Applications, and Strategies for Data Interpretation, 4th ed.; John Wiley
and Sons, 2007.
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~ Figure 1-23. CI spectra of the malonamide of pentobarbital using methane
(panel A) or ammonia (panel B) as reagent gas.

Watson, J. T.; Sparkman, O. D. Introduction to Mass Spectrometry: Instrumentation, Applications, and Strategies for Data Interpretation, 4th ed.; John Wiley
and Sons, 2007.
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electrospray ionization
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Fig. 12.17 Rubinson and Rubinson Contemporary Instrumental Analysis
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Figure 8-6. ESI mass spectrum of 10 pmol horse heart m yoglobin (reported
‘average mol. wt = 16,951.5 Da; experimentally determined as
16,951.0 Da) obtained with a low-resolution quadrupole mass

spectrometer. Data provided courtesy of James Bradford, Graduate Assistant, in the
‘Macromolecular Structure Facility at Michigan State Universily, East Lansing, Ml

Watson, J. T.; Sparkman, O. D. Introduction to Mass Spectrometry: Instrumentation, Applications, and Strategies for Data Interpretation, 4th ed.; John Wiley
and Sons, 2007.
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Figure 9-1. Structures and properties of representative compounds used as
MALDI matrices.

tigger:

“flight tube.

‘defector

Figure 9-2. Schematic diagram of a MALDI TOF instrument (c). A solid

deposit of analyte/matrix mixture js conceptually represented on

a sample plate (b). Laser radiation is foc.
use
Spot on the plate to effect ionization.  onto the sample

Watson, J. T.; Sparkman, O. D. Introduction to Mass Spectrometry: Instrumentation, Applications, and Strategies for Data Interpretation, 4th ed.; John Wiley

and Sons, 2007.
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Figure 9-5. MALDI TOF mass spectrum of bovine serum albumin from a
matrix of sinapinic acid. Data obtained by Dr. Hob(g{ood, Visiting Scientist in

80000

the Department of Biochemistry, Michigan State University, Easi\Lansing, M.

Watson, J. T.; Sparkman, O. D. Introduction to Mass Spectrometry: Instrumentation, Applications, and Strategies for Data Interpretation, 4th ed.; John Wiley
and Sons, 2007.



https://www.youtube.com/watch?v=sAJ9FiuxUhA
Waters MALDI MS

http://www.waters.com/waters/en US/MALDI-SYNAPT-G2-Si-Mass-
Spectrometry/nav.htm?cid=134740700

Agilent IM-QTOF
https://www.youtube.com/watch?v=UuV1xtil7Qw


http://www.waters.com/waters/en_US/MALDI-SYNAPT-G2-Si-Mass-Spectrometry/nav.htm?cid=134740700
https://www.youtube.com/watch?v=sAJ9FiuxUhA

Volume 42, February 2018, Pages 1-8
ELSEVIER

Current Opinion in Chemical Biology

Recent advances in ion mobility—mass spectrometry for
improved structural characterization of glycans and

glycoconjugates
Zhengwei Chen ' * Matthew S Glover = 2, Lingjun Li - >&

Show more

https://doi.org/10.1016/.cbpa.2017.10.007
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Figure 1. FTICR images from a liver of a rat dosed with 8 mg/kg olanzapine (2 h postdose). (A) Average of all spectra collected from matrix
spots on the tissue (insetimage). The m/z region of the average spectrum in the regions of protonated molecule of (B) olanzapine, (C) desmethyl
metabolite, and (D) hydroxymethyl metabolite. lon images of each marked peak is inset to each spectrum.

Caprioli, R. et al., Analytical Chemistry, Vol. 80, No. 14, July 15, 2008



Part Ill — Mass Analyzers
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Types of Mass Analyzers — Sectors
(Magnetic/Electrostatic)

Initial Ton  KE = zeV = L m?

Acceleratiouﬁ,,------ -

Figure 2.43
Energy dispersion in an electric sector (fof) and in a magnetic

secror (fottom)
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‘ m Bre
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Hoffman and Stroobant, Mass Spectrometry
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Flgure 20-13 Nier-Johnson design of a double-focusing mass spectrometer.

The m/z spectrum is obtained by
changing the magnitude of B or E

Skoog, Holler, and Nieman, Instrumental Analaysis



Commercial Double-Focusing Mass Spectromete

}4 10 feet P{



Types of Mass Analyzers — Time-of-Flight (TOF)
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http://www.chm.bris.ac.uk/ms/theory/tof-massspec.html
https://www.youtube.com/watch?v=BFuZali-zDk



https://www.youtube.com/watch?v=BFuZaIi-zDk

Types of Mass Analyzers — Quadrupole (Single Quad)

TO
DETECTOR

quadrupole rods

B¢ Univers ity of
BE] BRISTOL

exit slit
o (to detector)
ion with a
stable trajectory
(detected)
source slit ion with an
unstable trajectory
(not detected)

http://www.chm.bris.ac.uk/ms/images/quad-schematic2.gif
https://www.youtube.com/watch?v=lowMQnI6Rxc



https://www.youtube.com/watch?v=IowMQnI6Rxc

Types of Mass Analyzers — Fourier Transform lon
Cyclotron Resonance (FTICR)
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s pecirum spacirum
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http://www.chm.bris.ac.uk/ms/images/fticr-schematic.gif
http://youtu.be/a5aLlm9g-Xc



http://youtu.be/a5aLlm9q-Xc
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gure 2-44. Concept of Fourier transform (FT) in converting a complex
- signal from the time domain to the frequency domain.

Watson, J. T.; Sparkman, O. D. Introduction to Mass Spectrometry: Instrumentation, Applications, and Strategies for Data Interpretation, 4th ed.; John Wiley
and Sons, 2007.



ion beam

>
amplifier

Figure 2-56. Conceptual diagram of a discrete-dynode electron muliiplier.
From McFadden, WH, Techniques of GC/MS, Wiley-interscience, New York, 1973, with
permission.

Watson, J. T.; Sparkman, O. D. Introduction to Mass Spectrometry: Instrumentation, Applications, and Strategies for Data Interpretation, 4th ed.;
John Wiley and Sons, 2007.



rogistive
conductive

electrons

1

signal @ | <} | 1

] ] ] ~dynode electron
Figure 2-57. Conceptual diagram of a continuous lectr
d multiplier; the field gradient along the conducfwe internal
surface of the cornucopia attracts the cascading electrons

toward the preamplifier.

Watson, J. T.; Sparkman, O. D. Introduction to Mass Spectrometry: Instrumentation, Applications, and Strategies for Data Interpretation, 4th ed.;
John Wiley and Sons, 2007.



Part IV — Tandem Mass Spectrometry



The Reference

Yost, R. A. and C. G. Enke (1979). "Triple quadrupole
mass spectrometry for direct mixture analysis and
structure elucidation.” Anal. Chem. 51(12): 1251A-
1252A, 1256A, 1258A, 1260A, 1262A.
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FIGURE12.7 A
lllustration of the operation of a MS/MS system.

The sample mixture of molecules with molecular masses B > A > C > E > G > D can be
separated, but with the parent ions and their fragments overlapping. The first mass separator
is set to select a single parent ion, which is passed into the collision chamber where it
undergoes fragmentation through collisions with a gas such as argon or helium. For example,
suppose E is selected. The surviving parent ion E and ion fragments F,~F; pass into a second
mass separator, which produces a mass spectrum of E and its fragmentation products.

Rubinson, K. A.; Rubinson, J. F. Contemporary Instrumental Analysis; Prentice Hall: Upper Saddle River, 2000.



Triple Quadrupole Tandem Mass Spectrometer

Quad Particle
Mass Filter Multiplier
=3 |
) .
W
Sample lon lon n Product lon lon
lonization Selection +lor Selection Detection

Figure 1. Conceptual diagram of the triple quadrupole mass spectrometer showing each component and its function

e Particularly simple and efficient approach to
selecting ion fragments.

* Fragmentation caused by Collision-induced
dissociation (CID).



Cl Gas in

Collision Gas in : {

Solids Probe
or Sample Iniet

Figure 5. Scale drawing (top view) of triple quadrupole mass spectrometer

A scale drawing of the triple quadrupole spectrometer
constructed at Michigan State University.



1.

2.

3.

4.

5.

Modes of Operation

Normal Mass Spectrometry
2"d and 3" quadrupoles in RF-only mode

Scan for fragments of parent ion

15t quadrupole select specific ion while 3™ quadrupole scans for
fragments

Fragment lon Measurement

15t quadrupole select specific ion while 3™ quadrupole measures a
specific fragment ion

Fragment Reaction

Specific Neutral Mass Loss

Scanning both mass filters with a fixed difference in mass (example
following)



Total Ion Current (TIC)

?

rel.int.

time

Selected Ion Monitoring (SIM)

rel.int.

time

Selected Reaction Monitoring (SRM)

rel.int.

time

http://www.ionsource.com/tutorial/msquan/intro.htm; accessed 10/18/2010



http://www.ionsource.com/tutorial/msquan/intro.htm

Mixture Analysis

Example: solution containing 3-heptanone, n-
heptanal, n-octane, cyclohexane, and 2-
pentanone all in equal concentrations.

114 g/mol 114 g/mol

W H_ﬂ/v\/\

o

114 g/mol T e <:> 84 g/mol



Mixture Spectrum after fragmentation

43
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Figure 3. Comparison of CID spectra of selected ions in the El spectrum of a five component mixture with reference CiD
spectra from pure components

Fragmentation Reference Spectra



Structure Elucidation

Examp[e; Same molar weight but they have a
difference fragmentation spectra thus we

1 can tell them apart using triple quadrupole
S - mass spectroscopy.
CID Spectrum of 43* Fragmentation of 43°
A 43
15 : s o
uml l s ‘)J mp— CHiC
‘ 2'0 40 mZ 43
Reference CID Spectra
43
@—< tros\HA’goot;m 115 o an ’ -€0 ta
S (Contimations / °/ ™
27 .
Vst il 39:1 e e cuo-c"?‘o
20 4O mZ 27 29

Figure 4. Structure elucidation of 43" functional moiety by interpretation of CID
spectrum and comparison with reference CID spectra



Part V — Applications



Accurate Mass

n Mass Spectrometry March 2012

spectroscopyoniine.co

Accurate Mass: Why It's the Best
Solution for Metabolite Identification
In Discovery, Development, and
Clinical Applications

TbI I Exa mpl of ppm and mDa at different mas
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Figure 1: Example of a tripeptide and a possible xenobiotic with similar
nominal mass.

B 15478
Al 142405

AR T4Ya84

0.01 Da window

Figure 2: Two extracted ion chromatograms from the same data file.
The top trace is generated using a 1-Da wide window. The bottom trace
is from using a 10-mDa wide window.



Table |I: List of common elements and their accurate masses

clomens  Nudide  NomRl | Tadt e
Carbon 12C 12 12.0000 0.0000
Nitrogen 14N 14 14.0031 0.0031
Hydrogen H 1 1.0078 0.0078
Oxygen 160 16 15.9949 -0.0051
Chlorine 35CI 35 34.9689 -0.0311
Fluorine 19F 19 18.9984 -0.0016
Sulfur 32§ 32 31.9721 -0.0279

http://www.chemcalc.org/



http://www.chemcalc.org/

Figure 1: Mass accuracy determination and the FWHM method for determining

resolution for a mass spectrometer measured at a given ion.
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Balogh, M. LC-GC Europe, 17(3), 152-159 (2004)




Figure 2: The need for informational spacing to increase (instrumental resolving

power) between ion peaks and associated isotopes as informational demand
increases. (Reprinted with permission from reference 7.)
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Balogh, M. LC-GC Europe, 17(3), 152-159 (2004)



- O
¥
I"tl: j
H H
sulphide Aldehyde
miz 3441433 (2.3 ppm) miz 3441069 (1.5 ppm)

Table 2: Sulphide and aldehyde metabolites that can be differentiated only by high

mass accuracy (Courtesy of Waters Corporation, Milford, Massachusetts, USA).

Component Calculated Measured + (mDa) + (ppm)
(miz) (m/z)
Parent 3601382 360.1366 1.6 4.4
Sulphide 3441433 3441424 09 26
Sulphone 376133 376.1330 0.1 0.3
Desmethyl 3461225 3461218 0.7 20
5-Desmethyl 3301276 330.1265 1.1 33
Aldehyde 344 1069 3441074 0.5 15
S-Pyridone 272 DB58 272 0867 0.9 33

Balogh, M. LC-GC Europe, 17(3), 152-159 (2004)



Figure 5: Differentiated by overall cost (and complexity), the combination of
guadrupole technology and TOF appears to deliver the best capability, especially in

terms of performance (fragmentation for structural characterization, quantitative
capabilities and sensitivity). (Reprinted with permission from reference 1.)
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1. Draw the mass spectra you expect to observe for benzyl alcohol if you analyze it to

different ways:
a. Using an El source with a quadrupole mass analyzer

b. Using an ESI source with a TOF mass analyzer



Ambient lonization Methods

http://aston.chem.purdue.edu/research/ambient-ionization-methods

Mass Spectrometry in the Ambient Environment

MALDI + ESI =
DIl + ESI = DESI LD + ESI = ELDI MALDESI
\\\ charnﬂ%
- Droplets by,
Condensasd Fhase Condensed Phase Condensad Fhase
and Matrix
ESDI + DI= EDI AP-MALDI DART
- - S - r.iefasuble AlGins
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DESI: Takats et al, Science, 2004, 306, 471
ELDI: Shiea et al, RCIM, 2005, 19, 3701
MALDESI: Muddiman, JASMS, 2006, 17, 1712
EDI: Hiracka et al, JMS, 2006, 41, 894
AP-MALDI: Dororshenko et al, [JMS, 2002
DART: Cody et al, Anal. Chem, 2005, 77, 2297


http://aston.chem.purdue.edu/research/ambient-ionization-methods

DESI analysis on skin for drug monitoring

Human skin 50 minute after ingestion of 10 mg Claritin®

244.55
100 : X 5

50 - do

0% 07 “cH,
Claritin®
1183.73 383.36
; 200.73 304.27 469.45
; h ’ t I ‘! 385.36 1474-82
0 3 o ‘Jw ; : \
200 280 360 440

http://aston.chem.purdue.edu/research/ambient-ionization-methods

http://cen.acs.org/articles/87/i21/Silver-Lining-Melamine-Crisis.html



http://aston.chem.purdue.edu/research/ambient-ionization-methods
http://cen.acs.org/articles/87/i21/Silver-Lining-Melamine-Crisis.html

