MCS 121
Topics

1. The derivative
 (a) Conceptually
 • as speed: as a rate of change
 • as the slope of the tangent line
 • as a limit, i.e., the "formal definition"
 (b) Calculating derivatives
 • from a table of values
 • from a graph
 • from the formal definition
 • from the rules in Chapter 3 (product rule, quotient rule, chain rule, etc)
 • implicitly
 (c) Using derivatives
 • to get information about graphs
 • to find global max and min
 • to find marginal cost, marginal revenue, etc.
 • to solve modeling problems
 • to get tangent line approximations and for local linearization
 • to implement L’Hopital’s Rule

2. The integral
 (a) Conceptually
 • as a way of getting position from velocity
 • as a sum/difference of areas
 • as a limit of Riemann sums (lower, upper, left, or right . . .)
 (b) Fundamental Theorem of Calculus
 (c) Calculating definite integrals
 • calculating left and right sums from a table
 • using the R-Sums program: understanding what it does
 • using areas (rectangles, triangles, parts of circles, etc.)
 • using antiderivatives (The Fundamental Theorem, mentioned above . . .)
 (d) Finding antiderivatives
 • graphically
 • numerically
 • analytically (derivative rules backwards)
 • using the Second Fundamental Theorem