1.5.20 This graph is an inverted cosine curve with amplitude 8 and period 20π. One possibility is $f(x) = -8 \cos\left(\frac{x}{10}\right)$. Other possibilities: $f(x) = 8 \sin\left(\frac{1}{10}(x - 5\pi)\right)$, $f(x) = 8 \cos\left(\frac{1}{10}(x - 10\pi)\right)$, or $f(x) = -8 \sin\left(\frac{1}{10}(x + 5\pi)\right)$.

1.5.24 This graph is a sine curve with period 8, amplitude 3, and a vertical shift of 3. One possibility is $f(x) = 3 + 3 \sin\left(\frac{\pi}{4}x\right)$.

1.5.36 (a) V_0 represents the amplitude of the oscillation. It also represents the maximum voltage.

(b) The period is $\frac{2\pi}{120\pi} = \frac{1}{60}$ second.

(c) Since each oscillation takes 1/60 second, in 1 second there are 60 complete oscillations.

1.5.40 We use a cosine function of the form $H = A \cos(Bt) + C$. Since the period is 24 hours, $2\pi/B = 24$, giving $B = \pi/12$. The temperature oscillates around an average value of 60°F, so $C = 60$. The amplitude of the oscillation is 20°F. To arrange that the temperature be at its lowest when $t = 0$, we take A negative. Thus $H = -20 \cos\left(\frac{\pi}{12}t\right) + 60$.

1.6.4 As $x \to \infty$, $y \to \infty$. As $x \to -\infty$, $y \to 0$.

1.6.6 (a) II and III because in both cases, the numerator and denominator each have x^2 as the highest power with coefficient 1. Therefore, $y \to \frac{x^2}{x^2} = 1$ as $x \to \pm\infty$.

(b) I, since $y \to \frac{x}{x} = 0$ as $x \to \pm\infty$.

(c) II and III, since replacing x by $-x$ leaves the graph of the function unchanged.

(d) None

(e) III, since the denominator is zero and $f(x)$ tends to $\pm\infty$ when $x = \pm1$.

1.6.10 $f(x) = k(x + 3)(x - 1)(x - 4) = k(x^3 - 2x^2 - 11x + 12)$, where $k < 0$. ($k \approx -\frac{1}{6}$ if the horizontal and vertical scales are equal; otherwise one can’t tell how large k is.)

1.6.22 (a) $R = kr^4$ where k is a constant.

(b) Given $R = 400$ for $r = 3$, we can determine the constant k.

\begin{align*}
400 &= k(3)^4 \\
400 &= k(81) \\
81k &= \frac{400}{81} \\
k &= \frac{400}{81} \approx 4.938.
\end{align*}

So the formula is $R = 4.938r^4$.

(c) Evaluating the formula above at $r = 5$ yields $R = 4.928(5)^4 = 3086.42\text{cm}^3/\text{sec}$.