MCS 142: INTRODUCTION TO STATISTICS
SECTION 4.3 and 4.4 HOMEWORK

(1) Let X be a random variable representing the outcome when a single die is rolled once.
 (a) Find a formula for the probability distribution of the random variable X.
 (b) Find the mean, μ, of the random variable X and interpret it in context.
 (c) Find the variance of X using $\sigma^2 = E(X - \mu)^2$.
 (d) Find the variance of X using $\sigma^2 = E(X^2) - \mu^2$.

(2) The proportion of people who respond to a certain mail-order solicitation is a continuous random variable X with pdf (probability density function)

 \[f(x) = \begin{cases}
 \frac{2(x+2)}{5} & 0 < x < 1 \\
 0, & \text{otherwise}
 \end{cases} \]

 (a) Show that $P(0 < X < 1) = 1$.
 (b) What is the probability that more than $1/4$ but fewer than $1/2$ of the people contacted will respond to this type of solicitation?

(3) Let X denote the maximum of three real numbers chosen independently and uniformly (i.e., without bias) at random from the interval $[1, 10]$. The pdf of X is f where

 \[f(x) = \frac{(x - 1)^2}{243} \quad \text{if} \quad 1 \leq x \leq 10. \]

 (a) What is the probability that X is less than 5?
 (b) What is the probability that X exceeds 5?
 (c) What is the probability that $X = 5$?
 (d) What is the probability that $4 < X \leq 6$?
 (e) What is the mean value of X?
 (f) What is the variance of X?
 (g) What is the standard deviation of X?

(4) One commonly used model of component lifetimes is the exponential model. Suppose that the lifetime L of a component, in hours, is a random variable having pdf

 \[f(x) = 0.01e^{-0.01x} \quad \text{if} \quad x > 0. \]

 Find the probability that the component’s lifetime is between 100 and 200 hours.
CALCULUS REVIEW

THE FUNDAMENTAL THEOREM OF CALCULUS

If \(f \) is a continuous function on \([a, b]\) and if \(F \) is any antiderivative of \(f \), then
\[
\int_a^b f(x) \, dx = F(b) - F(a).
\]

A SHORT TABLE OF INTEGRALS

The indefinite integral \(\int f(x) \, dx \) represents an arbitrary antiderivative of \(f \). Let \(C \) denote
an arbitrary constant. Over any interval on which the integrand is defined we have:
\[
\int x^n \, dx = \frac{x^{n+1}}{n+1} + C \quad \text{if} \quad n \neq -1,
\]
\[
\int \frac{1}{x} \, dx = \ln |x| + C,
\]
\[
\int e^x \, dx = e^x + C \quad \text{if} \quad b \neq 0
\]
and
\[
\int b^x \, dx = \frac{b^x}{\ln b} + C \quad \text{if} \quad b > 0, b \neq 1.
\]

CHANGE OF VARIABLE/SUBSTITUTION

Let \(u = g(x) \). Then \(du = g'(x) \, dx \) and
\[
\int f(g(x)) \cdot g'(x) \, dx = \int f(u) \, du
\]
and
\[
\int_a^b f(g(x)) \cdot g'(x) \, dx = \int_{g(a)}^{g(b)} f(u) \, du.
\]