Counting Notation

1. The number of elements in set \(A \) is denoted \(\#(A) \) or \(|A| \).

2. For integer \(k \),
 \[
 \binom{r}{k} = \begin{cases} \frac{r^k}{k!} & \text{if } k \geq 0 \\ 0 & \text{if } k < 0. \end{cases}
 \]
 For a positive integer \(r \), “\(r \) choose \(k \)” counts the number of \(k \)-element subsets of an \(r \)-element set.

3. A multiset is just like a set except that repetitions count (make a difference). One notation for a multiset lists in braces each element preceded by its repetition factor and a centered dot. For example,
 \[
 \{S, T, A, T, I, S, T, I, C, S\} = \{1 \cdot A, 1 \cdot C, 2 \cdot I, 3 \cdot S, 3 \cdot T\}.
 \]

4. The number of (unordered) selections of \(k \) items from a multiset of \(n \) distinct elements with no restriction on the number of repetitions (any number from 0 to \(k \) of each item may be taken), read “\(n \) multichoose \(k \)”, is
 \[
 \binom{n}{k} = \binom{k + n - 1}{k}.
 \]

5. The Stirling number of the second kind, \(\begin{bmatrix} n \\ k \end{bmatrix} \), read “\(n \) subset \(k \)”, gives the number of ways to partition a set of \(n \) elements into \(k \) (unordered) nonempty subsets.
 For a given \(n \), the Stirling numbers of the second kind are just the right coefficients to use to express an ordinary \(n^{th} \) power in terms of falling powers:
 \[
 x^n = \sum_k \begin{bmatrix} n \\ k \end{bmatrix} x^k.
 \]

6. For integer \(k \geq 2 \) and nonnegative integers \(r_1, \ldots, r_k \) satisfying \(r_1 + \cdots + r_k = n \), the multinomial coefficient is denoted and defined as follows:
 \[
 \binom{n}{r_1, \ldots, r_k} = \frac{n!}{r_1! \cdots r_k!}.
 \]

1