
C H A P T E R 17

Hyperbolic
Transformations

Though the text of your article on ‘Crystal Symmetry and
Its Generalizations’ is much too learned for a simple, self-
made pattern man like me, some of the text-illustrations and
especially Figure 7, page 11, gave me quite a shock . . .
If you could give me a simple explanation how to construct
the following circles, whose centres approach gradually from
the outside till they reach the limit, I should be immensely
pleased and very thankful to you! Are there other systems
besides this one to reach a circle limit?
Nevertheless I used your model for a large woodcut (of which
I executed only a sector of 120 degrees in wood, which I
printed 3 times). I am sending you a copy of it.
– M. C. Escher (1898–1972), from a letter to H. S. M. Cox-
eter, as reported in [5]

The illustration that gave Escher “quite a shock” was a drawing that
Coxeter had produced of a regular tiling of the Poincaré disk by triangles.
This tiling inspired Escher to create his “Circle Limit I” woodcut. A
version of this image created by Doug Dunham is shown in Figure 17.1,
with a few of the basic triangle tiles outlined in bold arcs. For more on
Dunham’s work on Escher-like hyperbolic tilings, see [7].
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Figure 17.1 Dunham’s Version of Circle Limit I

The tiling illustrated in this figure is a regular tiling—all triangles
used to build the tiling are congruent via hyperbolic transformations;
that is, one-to-one and onto functions of the Poincaré disk to itself that
preserve the Poincaré distance function.

In Chapter 5 we saw that the group of distance-preserving func-
tions of the Euclidean plane consisted of Euclidean reflections, rotations,
translations, and glide reflections. Such isometries not only preserved
lengths of segments, but preserved angles as well. We also saw that the
set of all Euclidean isometries formed an algebraic structure called a
group. Before we study the nature of hyperbolic isometries, we will look
at an alternate way to represent Euclidean isometries that will be useful
in defining hyperbolic isometries.

Each element of the group of Euclidean isometries can be represented
by a complex function. For example, the function f(z) = z + (v1 +
iv2) represents translation by the vector v = (v1, v2), and g(z) = eiφz
represents a rotation about the origin by an angle φ. Rotations about
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other points in the plane, say rotation about a by an angle of φ, can be
defined by a sequence of isometries: first, translation by the vector −a,
then rotation by φ about the origin, and then translation by the vector a.
Thus, the desired rotation can be represented as h(z) = (eiφ(z−a))+a =
eiφz + (a− eiφa).

Thus, any Euclidean translation or rotation can be represented as a
complex function of the form

f(z) = eiφz + b (17.1)

with b complex and φ real. These are the orientation-preserving isome-
tries of the Euclidean plane. The set of all such functions, which are
sometimes called rigid motions of the plane, forms a group called the
Euclidean group.

What are the analogous orientation- and distance-preserving func-
tions in hyperbolic geometry? In particular, what are the orientation-
and distance-preserving functions in the Poincaré model? Since all rigid
Euclidean isometries can be realized as certain one-to-one and onto com-
plex functions, a good place to look for hyperbolic transformations might
be in the entire class of one-to-one and onto complex functions.

But, which functions should we consider? Since we are concentrating
on the Poincaré model, we need to find one-to-one and onto orientation-
preserving functions that preserve the Euclidean notion of angle, but
do not preserve Euclidean length. In section 16.1, we studied functions
that preserved angles and preserved the scale of Euclidean lengths lo-
cally. Such functions were called conformal maps. Euclidean rigid mo-
tions such as rotations and translations preserve angles, and preserve
length globally. Such motions comprise a subset of all conformal maps.

If we consider the entire set of all conformal maps of the plane onto
itself, then by Theorem 16.5 such maps must have the form f(z) = az+b,
where a 6= 0 and b is a complex constant. Since a = |a|eiφ, then f is the
composition of a translation, a rotation, and a scaling by |a|. Thus, f
maps figures to similar figures. The set of all such maps forms a group
called the group of similitudes or similarity transformations of the plane.
If b = 0 (f(z) = az, a 6= 0), we call f a dilation of the plane. Most
similarity transformations cannot be isometries of the Poincaré model
since most similarities (like translations and scalings) do not fix the
boundary circle of the Poincaré disk.

Clearly, we must expand our set of possible transformations. One
way to do this is to consider the set of all one-to-one and onto conformal
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maps of the extended complex plane to itself. In Theorem 16.6 we saw
that these maps have the form

f(z) = az + b

cz + d
, ad− bc 6= 0 (17.2)

17.1 MÖBIUS TRANSFORMATIONS

Definition 17.1. A Möbius transformation is a function on the
extended complex plane defined by equation 17.2. The set of Möbius
transformations forms a group called the Möbius group.

Every Möbius transformation is composed of simpler transforma-
tions.

Theorem 17.1. Let T be a Möbius transformation. Then T is the
composition of translations, dilations, and inversion (g(z) = 1

z ).

Proof: If c = 0, then f(z) = a
dz + b

d , which is the composition of a
translation with a dilation.

If c 6= 0, then f(z) = a
c −

ad−bc
c2

1
z+ d

c

. Thus, f is the composition of a
translation (by d

c ), an inversion, a dilation (by −ad−bc
c2 ), and a translation

(by a
c ). 2
Note that the Möbius group includes the group of Euclidean rigid

motions (|a| = 1, c = 0, d = 1), and the group of similarities (a 6=
0, c = 0, d = 1) as subgroups. Also note that we could define Möbius
transformations as those transformations of the form in equation 17.2
with ad− bc = 1, by dividing the numerator by an appropriate factor.

Within the group of Möbius transformations, can we find a subgroup
that will serve as the group of orientation-preserving isometries for the
Poincaré model? We shall see that there is indeed such a sub-group.
Before we can prove this, we need to develop a toolkit of basic results
concerning Möbius transformations.

17.1.1 Fixed Points and the Cross Ratio

How many fixed points can a Möbius transformation f have? Suppose
f(z) = z. Then

z = az + b

cz + d
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So, cz2 +(d−a)z−b = 0. This equation has at most two roots. Thus,
we have

Lemma 17.2. If a Möbius transformation f has three or more fixed
points, then f = id, where id is the identity Möbius transformation.

We saw in Chapter 5 that an isometry is uniquely defined by its effect
on three non-collinear points. For Möbius transformations we can relax
the condition on collinearity.

Theorem 17.3. Given any three distinct complex numbers z1, z2,
z3, there is a unique Möbius transformation f that maps these three
values to a specified set of three distinct complex numbers w1, w2,
w3.

Proof: Let g1(z) = z−z2
z−z3

z1−z3
z1−z2

. Then g1 is a Möbius transformation
(the proof is an exercise) and g1 maps z1 to 1, z2 to 0, and z3 to the
point at infinity.

Let g2(w) = w−w2
w−w3

w1−w3
w1−w2

. We see that g2 is a Möbius transformation
mapping w1 to 1, w2 to 0, and w3 to ∞.

Then f = g−1
2 ◦ g1 will map z1 to w1, z2 to w2, and z3 to w3.

Is f unique? Suppose f ′ also mapped z1 to w1, z2 to w2, and z3 to
w3. Then f−1 ◦f ′ has three fixed points, and so f−1 ◦f ′ = id and f ′ = f .
2

Corollary 17.4. If two Möbius transformations f , g agree on three
distinct points, then f = g.

Proof: This is an immediate consequence of the preceding theorem.
2

The functions g1 and g2 used in the proof of Theorem 17.3 are called
cross ratios.

Definition 17.2. The cross ratio of four complex numbers z0, z1,
z2, and z3 is denoted by (z0, z1, z2, z3) and is the value of

z0 − z2

z0 − z3

z1 − z3

z1 − z2
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The cross ratio is an important invariant of the Möbius group.

Theorem 17.5. If z1, z2, and z3 are distinct points and f is a
Möbius transformation, then (z, z1, z2, z3) = (f(z), f(z1), f(z2), f(z3))
for any z.

Proof: Let g(z) = (z, z1, z2, z3). Then g ◦ f−1 will map f(z1) to 1,
f(z2) to 0, and f(z3) to∞. But, h(z) = (z, f(z1), f(z2), f(z3)) also maps
f(z1) to 1, f(z2) to 0, and f(z3) to∞. Since g◦f−1 and h are both Möbius
transformations, and both agree on three points, then g ◦f−1 = h. Since
g ◦ f−1(f(z)) = (z, z1, z2, z3) and h(f(z)) = (f(z), f(z1), f(z2), f(z3)),
the result follows. 2

17.1.2 Geometric Properties of Möbius Transformations

Of particular interest to us will be the effect of a Möbius transformation
on a circle or line.

Definition 17.3. A subset of the plane is a cline if it is either a
circle or a line.

The cross ratio can be used to identify clines.

Theorem 17.6. Let z0, z1, z2, and z3 be four distinct points. Then
the cross ratio (z0, z1, z2, z3) is real if and only if the four points lie
on a cline.

Proof: Let f(z) = (z, z1, z2, z3). Then since f is a Möbius transfor-
mation, we can write

f(z) = az + b

cz + d

Now f(z) is real if and only if

az + b

cz + d
= az + b

cz + d

Multiplying this out, we get

(ac− ca)|z|2 + (ad− cb)z − (da− bc)z + (bd− db) = 0 (17.3)
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If (ac−ca) = 0, let α = (ad−cb) and β = bd. Equation 17.3 simplifies
to

Im(αz + β) = 0

This is the equation of a line (proved as an exercise).
If (ac − ca) 6= 0, then dividing through by this term we can write

equation 17.3 in the form

|z|2 + ad− cb
ac− ca

z − da− bc
ac− ca

z + bd− db
ac− ca

= 0

Let γ = ad−cb
ac−ca and δ = bd−db

ac−ca . Since ac− ca is pure imaginary, we
have that

γ = (−)da− bc
ac− ca

= da− bc
ca− ac

Equation 17.3 becomes

|z|2 + γz + γz + δ = 0.

Or,
|z + γ|2 = −δ + |γ|2

After multiplying and regrouping on the right, we get

|z + γ|2 =
∣∣∣∣ad− bcac− ca

∣∣∣∣2
Since ad − bc 6= 0, this gives the equation of a circle centered at -γ.

2

Theorem 17.7. A Möbius transformation f will map clines to
clines. Also, given any two clines c1 and c2, there is a Möbius trans-
formation f mapping c1 to c2.

Proof: Let c be a cline and let z1, z2, and z3 be three distinct points
on c. Let w1 = f(z1), w2 = f(z2), and w3 = f(z3). These three points
will lie on a line or determine a unique circle. Thus, w1, w2, and w3
will lie on a cline c′. Let z be any point on c different than z1, z2, or
z3. By the previous theorem we have that (z, z1, z2, z3) is real. Also,
(f(z), w1, w2, w3) = (f(z), f(z1), f(z2), f(z3)) = (z, z1, z2, z3), and thus
f(z) is on the cline through w1, w2, and w3.
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For the second claim of the theorem, let z1, z2, and z3 be three
distinct points on c1 and w1, w2, and w3 be three distinct points on c2.
By Theorem 17.3 there is a Möbius transformation f taking z1, z2, z3
to w1, w2, w3. It follows from the first part of this proof that f maps all
points on c1 to points on c2. 2

So, Möbius transformations map circles to circles. They also preserve
inversion through circles. Recall from Chapter 2 that the inverse of a
point P with respect to a circle c centered at O is the point P ′ on the
ray −→OP such that (OP ′)(OP ) = r2, where r is the radius of c and OP
is the hyperbolic length of OP (Figure 17.2).

O

C

P P’

Figure 17.2 Circle Inversion

If z = P and a = O, then the defining equation for the inverse z∗ of
z with respect to a circle c with radius r is

|z∗ − a||z − a| = r2

Since z∗ is on the ray through a and z, we get that z∗ − a = r1e
iθ and

z−a = r2e
iθ, and |z∗−a||z−a| = r1 ∗r2 = r1e

iθr2e
−iθ = (z∗−a)(z−a).

Thus,

z∗ − a = r2

z − a
(17.4)

It turns out that inversion can also be defined using the cross ratio.

Lemma 17.8. Let z1, z2, and z3 be distinct points on a circle
c. Then, z∗ is the inverse of z with respect to c if and only if
(z∗, z1, z2, z3) = (z, z1, z2, z3).

Proof: Let c have center a and radius r. Then, since the cross ratio
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is invariant under translation by −a, we have

(z, z1, z2, z3) = (z − a, z1 − a, z2 − a, z3 − a)
= (z − a, z1 − a, z2 − a, z3 − a)

= (z − a, r2

z1 − a
,

r2

z2 − a
,

r2

z3 − a
)

Since the cross ratio is invariant under the transformation f(z) = r2

z ,
we have

(z, z1, z2, z3) = ( r2

z − a
, z1 − a, z2 − a, z3 − a)

Finally, translation by a yields

(z, z1, z2, z3) = (a+ r2

z − a
, z1, z2, z3)

So, if (z∗, z1, z2, z3) = (z, z1, z2, z3), we see immediately that z∗ =
a+ r2

z−a and z∗ is the inverse to z.
On the other hand, if z∗ = a+ r2

z−a , then (z∗, z1, z2, z3) = (z, z1, z2, z3).
2

Definition 17.4. Two points z and z∗ are symmetric with respect
to a circle c if (z∗, z1, z2, z3) = (z, z1, z2, z3) for points z1,z2,z3 on c.

By the Lemma, this definition is not dependent on the choice of
points z1,z2,z3.

Theorem 17.9 (The Symmetry Principle). If a Möbius transfor-
mation f maps circle c to circle c′, then it maps points symmetric
with respect to c to points symmetric with respect to c′.

Proof: Let z1,z2,z3 be on c. Since

(f(z∗), f(z1), f(z2), f(z3)) = (z∗, z1, z2, z3)
= (z, z1, z2, z3)
= (f(z), f(z1), f(z2), f(z3))

the result follows. 2
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17.2 ISOMETRIES IN THE POINCARÉ MODEL
We now return to our quest of finding one-to-one and onto maps of the
Poincaré disk to itself that are orientation-preserving and will preserve
the Poincaré distance function. Our earlier idea was to search within the
group of Möbius transformations for such functions. It is clear that any
candidate Möbius transformation must map the Poincaré disk to itself
and so must leave the boundary (unit) circle invariant.

Theorem 17.10. A Möbius transformation f mapping |z| < 1 onto
|w| < 1 and |z| = 1 onto |w| = 1 has the form

f(z) = β
z − α
αz − 1

where |α| < 1 and |β| = 1.

Proof: Let α be the point which gets sent to 0 by f . Then by equa-
tion 17.4, the inverse to z = α, with respect to the unit circle, is the point
z∗ = 1

α . By Theorem 17.9, this inverse point gets sent to the inverse of
0, which must be ∞.

If α 6= 0, then c 6= 0 (∞ does not map to itself), and

f(z) =
(
a

c

)
z + b

a

z + d
c

Since α maps to 0, then b
a = −α and since 1

α gets mapped to ∞, then
d
c = − 1

α . Letting β = α
(
a
c

)
, we get

f(z) = β
z − α
αz − 1

Now 1 = |f(1)| = |β| |1−α||α−1| = |β|. Thus, |β| = 1.
If α = 0, then f(z) = a

dz + c
d . Since f(0) = 0, c

d = 0, and since
|f(1)| = 1, we get |β| = |ad | = 1. 2

Will transformations of the form given in this theorem preserve ori-
entation and distance? Since such transformations are Möbius transfor-
mations, and thus conformal maps, they automatically preserve orien-
tation. To determine if they preserve the Poincaré distance function, we
need to evaluate the distance function for points represented as complex
numbers.
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Theorem 17.11. The hyperbolic distance from z0 to z1 in the
Poincaré model is given by

dP (z0, z1) = | ln((z0, z1, w1, w0))| (17.5)

= | ln(z0 − w1

z0 − w0

z1 − w0

z1 − w1
)|

where w0 and w1 are the points where the hyperbolic line through z0
and z1 meets the boundary circle.

Proof: From our earlier development of the Poincaré model (sec-
tion 7.2), we have

dP (z0, z1) = | ln( |z0 − w1|
|z0 − w0|

|z1 − w0|
|z1 − w1|

)|

Since |zw| = |z||w| and | zw | =
|z|
|w| , we have

dP (z0, z1) = | ln(|z0 − w1

z0 − w0

z1 − w0

z1 − w1
|)|

By Theorem 17.6, we know that z0−w1
z0−w0

z1−w0
z1−w1

, which is the cross ratio
of z0, z1, w1, and w0, is real since all four points lie on a circle. Also,
this cross ratio is non-negative (proved as an exercise). Thus,

dP (z0, z1) = | ln(z0 − w1

z0 − w0

z1 − w0

z1 − w1
)|

2

Corollary 17.12. Transformations of the form

f(z) = β
z − α
αz − 1

where |α| < 1 and |β| = 1 preserve the Poincaré distance function.

Proof: Let f be a transformation of the form described in the corol-
lary, and let z0, z1 be two points in the Poincaré disk, with w0, w1
the points where the hyperbolic line through z0, z1 meets the boundary
circle. Then, since f is a Möbius transformation, it will map clines to
clines and will preserve angles. Thus, f(z0), f(z1) will be points in the



236 � Exploring Geometry - Web Chapters

Poincaré disk and f(z0), f(z1), f(w0), f(w1) will all lie on a cline that
meets the boundary circle at right angles. That is, these points will lie
on a hyperbolic line. Also, since f maps the boundary to itself, we know
that f(w0) and f(w1) will lie on the boundary.

Thus, by Theorem 17.5, we have

dP (f(z0), f(z1)) = | ln((f(z0), f(z1), f(w1), f(w0)))|
= | ln(z0, z1, w1, w0))|
= dP (z0, z1)

2
What types of transformations are included in the set defined by

f(z) = β
z − α
αz − 1 (17.6)

where |α| < 1 and |β| = 1?
If |β| = 1, then β = eiθ. So, multiplication by β has the geometric

effect of rotation about the origin by an angle of θ. Thus, if α = 0 in
equation 17.6, then T (z) = −βz is a simple rotation about the origin by
an angle of π + θ.

On the other hand, if β = 1 in equation 17.6, consider the line tα
passing through the origin and α. We have that f(tα) = α t−1

|α|2−1 , which
is again a point on the line through α. The map f can be considered a
translation along this line.

Thus, we see that orientation- and distance-preserving maps contain
rotations and translations, similar to what we saw in the Euclidean case.
However, translations are not going to exhibit the nice parallel properties
that they did in the Euclidean plane.

What about orientation-reversing isometries? Since the cross ratio
appears in the distance function and is always real on Poincaré lines,
then simple complex conjugation (f(z) = z) of Poincaré points will
be a distance-preserving transformation in the Poincaré model and will
reverse orientation.

In fact, f , which is a Euclidean reflection, is also a hyperbolic re-
flection, as it fixes a hyperbolic line. Similarly, Euclidean reflection in
any diameter will be a hyperbolic reflection. This is most easily seen by
the fact that Euclidean reflection about a diameter can be expressed as
the conjugation of f by a rotation R about the origin by −θ, where θ is
the angle the diameter makes with the x-axis. Since rotation about the



Hyperbolic Transformations � 237

origin is an isometry in the Poincaré model, then R−1 ◦ f ◦R is also an
isometry.

All other hyperbolic reflections about lines that are not diameters
can be expressed as inversion through the circle which defines the line
(proved as an exercise).

We can now determine the structure of the complete group of isome-
tries of the Poincaré model. Let g be any orientation-reversing isometry
of the Poincaré model. Then, h = f ◦ g will be an orientation-preserving
isometry, and so h must be a transformation of the type in equation 17.6.
Since f−1 = f , we have that g can be expressed as the product of f
with an orientation-preserving isometry. This same conjugation prop-
erty would be true for any hyperbolic reflection. Thus, we have

Theorem 17.13. The orientation-preserving isometries of the
Poincaré model can be expressed in the form g = β z−α

αz−1 . Also, if r is
hyperbolic reflection about some hyperbolic line, then all orientation-
reversing isometries can be expressed as r ◦ g for some orientation
preserving g.

Hyperbolic isometries can be used to prove many interesting results
in Hyperbolic geometry. Using Klein’s Erlanger Program approach, in
order to prove any result about general hyperbolic figures, it suffices to
transform the figure to a “nice” position and prove the result there. For
example, we can prove the following theorems on distance quite easily
using this transformational approach.

Theorem 17.14. Let z be a point in the Poincaré disk. Then

dH(0, z) = ln
(1 + |z|

1− |z|

)

Proof: Let z = reiθ and T be rotation about the origin by −θ. Then
dH(0, z) = dH(T (0), T (z)) = dH(0, r). Now,

dH(0, r) =
∣∣∣∣ln( 0− 1

0− (−1)
r − 1

r − (−1)

)∣∣∣∣
=

∣∣∣∣ln(1− r
1 + r

)∣∣∣∣
= ln

(1 + r

1− r

)
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Since r = |z|, the result follows. 2
This result lets us convert from hyperbolic to Euclidean distance.

Corollary 17.15. Let z be a point in the Poincaré disk. If |z| = r
and if δ is the hyperbolic distance from 0 to z, then

δ = ln
(1 + r

1− r

)
and

r = eδ − 1
eδ + 1

Proof: The first equality is a re-statement of the preceding theorem.
The second equality is proved by solving for r in the first equality. 2

Exercise 17.2.1. Show that the set of Euclidean rigid motions f(z) = eiφz+
b, with b complex and φ real, forms a group.

Exercise 17.2.2. Show that the equation Im(αz + β) = 0, with α and β
complex constants, defines a line in the plane.

Exercise 17.2.3. Find a Möbius transformation mapping the circle |z = 1|
to the x-axis.

The next four exercises prove that the set of Möbius transformations
forms a group.

Exercise 17.2.4. Let f(z) = az+b
cz+d , where (ad − bc) 6= 0, and let g(z) =

ez+f
gz+h , where (eh − fg) 6= 0, be two Möbius transformations. Show that the
composition f ◦ g is again a Möbius transformation.

Exercise 17.2.5. Show that the set of Möbius transformations has an iden-
tity element.

Exercise 17.2.6. Let f(z) = az+b
cz+d , where (ad− bc) 6= 0, be a Möbius trans-

formation. Show that f−1(w) has the form f−1(w) = dw−b
−cw+a and show that

f−1 is a Möbius transformation.

Exercise 17.2.7. Why does the set of Möbius transformations automatically
satisfy the associativity requirement for a group?

Exercise 17.2.8. Show that the set of Möbius transformations that fix the
unit circle is a group.
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Exercise 17.2.9. Show that in the Poincaré model there is a hyperbolic
isometry taking any point P to any other point Q. [Hint: Can you find an
isometry taking any point to the origin?]

Exercise 17.2.10. Let T (z) = z−α
1−αz , with α 6= 0. Show that T has two fixed

points, both of which are on the unit circle. Thus, T has no fixed points in the
Poincaré model of the hyperbolic plane. Why would it make sense to call T a
translation?

Exercise 17.2.11. Show that the cross ratio term used in the definition of
hyperbolic distance is always real and non-negative. [Hint: Use transformations
to reduce the calculation to one that is along the x-axis.]

Exercise 17.2.12. Use the idea of conjugation of transformations to derive
the formula for reflection across the diameter y = x in the Poincaré model.
[Hint: Refer to exercise 5.7.3.]

Exercise 17.2.13. In the definition of hyperbolic distance given by equa-
tion 17.5, we need to determine boundary points w0 and w1. Show that we can
avoid this boundary calculation by proving that

dH(z0, z1) = ln( |1− z0z1|+ |z0 − z1|
|1− z0z1| − |z0 − z1|

)

[Hint: Use the hyperbolic transformation g(z) = z−z1
1−z1z

and the fact that dH is
invariant under g.]

Exercise 17.2.14. Prove that if z0, z1, and z2 are collinear in the Poincaré
disk with z1 between z0 and z2, then dP (z0, z2) = dP (z0, z1) + dP (z1, z2). This
says that the Poincaré distance function is additive along Poincaré lines.

Exercise 17.2.15. Let l be a Poincaré line. Define a map f on the Poincaré
disk by f(P ) = P ′, where P ′ is the inverse point to P with respect to the
circle on which l is defined. We know by the results at the end of Chapter ??
that f maps the Poincaré disk to itself. Prove that f is an isometry of the
Poincaré disk. Then, show that f must be a reflection. That is, inversion in a
Poincaré line is a reflection in the Poincaré model. [Hint: Review the proof of
Lemma 17.8.]

17.3 ISOMETRIES IN THE KLEIN MODEL
At the end of the last section, we saw that reflections play an important
role in describing the structure of isometries in the Poincaré model. This
should not be too surprising. In Chapter 5 we saw that all Euclidean
isometries could be built from one, two, or three reflections. The proof
of this fact used only neutral geometry arguments. That is, the proof
used no assumption about Euclidean parallels. Thus, any isometry in
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Hyperbolic geometry must be similarly built from one, two, or three
hyperbolic reflections.

In the Poincaré model, the nature of a reflection depended on whether
the Poincaré line of reflection was a diameter or not. If the line of reflec-
tion was a diameter, then the hyperbolic reflection across that line was
simple Euclidean reflection across the line. If the line was not a diame-
ter, then hyperbolic reflection across the line was given by inversion of
points through the circle that defined the line.

Let’s consider the first class of lines in the Klein model. Since the
Klein distance function is defined in terms of the cross ratio and since the
cross ratio is invariant under complex conjugation and rotation about
the origin, then these two transformations will be isometries of the Klein
model. By the same argument that we used in the last section, we see
that any Euclidean reflection about a diameter must be a reflection in
the Klein model.

What about reflection across a Klein line that is not a diameter?
Let’s recall the defining properties of a reflection. By Theorem 5.6, we
know that if P, P ′ are two Klein points, then there is a unique reflection
taking P to P ′. The line of reflection will be the perpendicular bisector
of PP ′.

Thus, given a Klein line l in the Klein disk and given a point P ,
we know that the reflection of P across l can be constructed as follows.
Drop a perpendicular line from P to l intersecting l at Q. Then, the
reflected point P ′ will be the unique point on the ray opposite −→QP such
that PQ ∼= QP ′. This point can be found by the following construction.

Theorem 17.16. Let l be a Klein line that is not a diameter. Let
P be a Klein point not on l. Let t be the Klein line through P

that meets l at Q at right angles. Let
←→
PΩ be the Klein line through

P perpendicular to t, with omega point Ω. Let
←→
QΩ be the Klein

line through Q and Ω that has ideal point Ω′ 6= Ω. Finally, let P ′
be the point on t where the (Euclidean) line through the pole of t
and Ω′ passes through t. Then P ′ is the reflection of P across l
(Figure 17.3).
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l

Pole(l)

P

t

Q

Pole(t)

P’

Ω

Ω’

Figure 17.3

Proof: To construct t we draw a line from the pole of l through P . To
construct←→PΩ we draw a line from the pole of t through P . Both of these
perpendiculars are guaranteed to exist by results from neutral geometry.

Now the line through Q and Ω must intersect the boundary at a
point Ω′ that is on the other side of t from Ω (in the Euclidean sense).
Thus, the line through the pole of t and Ω′ must intersect t at a point
P ′. If we can show that PQ ∼= QP ′, we are done.

Since
←−→
P ′Ω′ passes through the pole of t, then it is perpendicular to t

(in the Klein sense). By Angle-Angle congruence of omega triangles (see
exercise 7.3.10), we know that PQ ∼= QP ′. 2

The construction described in the theorem is quite important for
many other constructions in the Klein model. In the exercises at the end
of this section, we will investigate other constructions based on this one.

We can use this theorem to show that any two Klein lines are con-
gruent. That is, there is an isometry of the Klein model taking one to
the other. To prove this result, we will need the following fact.

Lemma 17.17. Given a Klein line l that is not a diameter of the
Klein disk, we can find a reflection r that maps l to a diameter of
the Klein disk.
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Proof: Let P be a point on l and let O be the center of the Klein disk.
Let Q be the midpoint of PO (in the sense of Klein distance). Let n be
the perpendicular to PO at Q. Then Klein reflection of l about n will
map P to O and thus must map l to a diameter, since Klein reflections
map Klein lines to Klein lines. 2

Corollary 17.18. Let l and m be Klein lines. Then there is an
isometry in the Klein model taking l to m.

Proof: By the lemma we know there is a reflection rl taking l to a
diameter dl. If dl is not on the x-axis, let Rl be rotation by −θ, where θ is
the angle made by dl and the x-axis. Then the Klein isometry hl = Rl◦r1
maps l to the diameter on the x-axis. Likewise, we can find a Klein
isometry hm taking m to a diameter on the x-axis. Then h−1

m ◦ hl is a
Klein isometry mapping l to m. 2

Exercise 17.3.1. Use the construction ideas of Theorem 17.16 to devise a
construction for the perpendicular bisector of a Klein segment PP ′.

Exercise 17.3.2. Devise a construction for producing a line l that is or-
thogonal to two parallel (but not limiting parallel) lines m and n.

Exercise 17.3.3. Show that in the Klein model there exists a pentagon with
five right angles. [Hint: Start with two lines having a common perpendicular.]

Exercise 17.3.4. Let Ω and Ω′ be
two omega points in the Klein disk
and let P be a Klein point. Let the
Euclidean ray from the pole of ΩΩ′
through P intersect the unit circle
at omega point Ω′′. Show that

−−→
PΩ′′

is the Klein model angle bisector of
∠ΩPΩ′. [Hint: Use omega triangles.]

Ω

Ω’

P

Ω’’
Pole

Exercise 17.3.5. Define a hyperbolic translation T in the Klein model as
the product of two reflections rl and rm where l and m have a common per-
pendicular t. Show that t is invariant under T .
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Exercise 17.3.6. Define a hyperbolic parallel displacement D in the Klein
model as the product of two reflections rl and rm where l and m are limiting
parallel to each other. Show that no Klein point P is invariant under D.
[Hint: Assume that P is invariant (that is, rl(P ) = rm(P )) and consider the
line joining P to rl(P ).]

17.3.1 Mini-Project - The Upper Half-Plane Model

In this chapter we have looked in detail at the isometries of the
Poincaré and Klein models of Hyperbolic geometry. Both of these models
are based on the unit disk.

There is really nothing special about using the unit disk in these
models. In the Poincaré model, for example, we could just as well have
used any circle in the plane and defined lines as either diameters or arcs
meeting the boundary at right angles. In fact, if c was any circle, we know
there is a Möbius transformation f that will map the unit disk to c. Since
Möbius transformations preserve angles, we could define new lines in c
to be the image under f of lines in the Poincaré model. Likewise, circles
in c would be images of Poincaré model circles, and the distance could
be defined in terms of f as well.

A natural question to ask is whether there are models for hyperbolic
geometry other than ones based on a set of points inside a circle.

If we think of the extended complex plane as being equivalent to the
sphere via stereographic projection, then lines in the plane are essentially
circles that close up at the point at infinity.

Is there a model for Hyperbolic geometry that uses as its boundary
curve a Euclidean line? To build a model using a line as a boundary
curve, we use the Klein Erlanger Program approach and determine the
transformations that leave the line invariant. This is analogous to the
work we did earlier to find the transformations that fix the unit circle in
the Poincaré model. For simplicity’s sake, let’s assume our line boundary
is the x-axis. Then we want to find Möbius transformations

f(z) = az + b

cz + d

that fix the x-axis.
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Exercise 17.3.7. Show that if f maps the x-axis to itself, then a, b, c, and
d must all be real. [Hint: Use the fact that 0 and ∞ must be mapped to real
numbers and that ∞ must also be the image of a real number.]

What about the half-planes y < 0 and y > 0? Let’s restrict our
attention to those transformations that move points within one half-
plane, say the upper half-plane y < 0.
Exercise 17.3.8. Show that if f fixes the x-axis and maps the upper half-
plane to itself, then ad− bc > 0. [Hint: Consider the effect of f on z = i.]

We have now proved the following result.

Theorem 17.19. If f fixes the x-axis and maps the upper half-
plane to itself, then

f(z) = az + b

cz + d

where a,b,c,d are all real and ad− bc > 0.

We will call the group of transformations in the last theorem the
Upper Half-Plane group, denoted by U .
Exercise 17.3.9. What curves should play the role of lines in the geometry
defined by U? [Hint: Refer to Figure 17.4.]

z
0

z
1

w
1

w
0

y

Figure 17.4 Upper Half-Plane Model

We can define distance just as we did for the Poincaré model in terms
of the cross ratio. For example, in Figure 17.4 the distance from z0 to z1
will be defined as

dU (z0, z1) = ln((z0, z1, w1, w0))

Exercise 17.3.10. What are the values of w0 and w1 in the distance formula
if z0 and z1 are on a piece of a Euclidean line?
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Exercise 17.3.11. Discuss why this geometry will satisfy the hyperbolic par-
allel postulate. [Hint: Argue that it is enough to show the postulate is satisfied
for the y-axis and z0 as shown in Figure 17.4.]

The geometry defined by the group U will be another model for
Hyperbolic geometry. This model (the upper half-plane model) is very
similar to the Poincaré model. In fact, there is a conformal map taking
one to the other. This map is defined by

g(z) = −iz + i

z − i
(17.7)

Exercise 17.3.12. Show that g maps the unit circle onto the x-axis. [Hint:
Consider z = i,−i, 1.]

Since g is a Möbius transformation, then g will preserve angles. So,
it must map Poincaré lines to upper half-plane lines. Also, since the
distance function is defined in terms of the cross ratio and the cross
ratio is invariant under g, then Poincaré circles will transform to upper
half-plane circles.

We conclude that the upper half-plane model is isomorphic to the
Poincaré model. Any property of one can be moved to the other by g or
g−1.

For future reference, we note that the inverse transformation to g is
given by

g−1 = i
w − i
w + i

(17.8)

17.4 WEIERSTRASS MODEL
There are other models of Hyperbolic geometry. One of the most inter-
esting is the Weierstrass model. Here points are defined to be Euclidean
points on one sheet of the hyperboloid x2+y2−z2 = −1 (see Figure 17.5).
Lines in this model are the curves on the top sheet of the hyperboloid
that are created by intersecting the surface with planes passing through
the origin. Each such line will be one branch of a hyperbola. For a com-
plete development of this model, see [8].
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Figure 17.5 Weierstrass Model

17.5 MODELS AND ISOMORPHISM
The two models of Hyperbolic geometry, the Poincaré model and the
Klein model, are very similar. In fact, there is a conformal map taking
one to the other that maps lines to lines, angles to angles, and the
distance function of one model to the distance function of the other. The
existence of such a function implies that the two models are isomorphic
—they have identical geometric properties.

We will construct a one-to-one map from the Klein model to the
Poincaré model as follows.

First, construct the sphere of radius 1 given by x2 + y2 + z2 = 1.
Consider the unit disk (x2 + y2 = 1) within this sphere to be the Klein
disk.

Let N be the north pole of the
sphere and let P be a point on
the Klein line l as shown. Project
P orthogonally downward to the
bottom of the sphere, yielding
point Q. Then, stereographically
project from N , using the line
from N to Q, yielding point P ′ in
the unit disk.

N

l

P

Q

P’
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Define a function F from the Klein disk to the Poincaré disk by
F (P ) = P ′, where P is a point in the Klein disk and P ′ is the unique
point defined by the construction above. Since projection is one-to-one
from the disk onto the lower hemisphere, and since stereographic projec-
tion is also one-to-one and onto from the lower hemisphere back to the
unit disk, then the map F is a one-to-one, onto function from the Klein
disk to the Poincaré disk.

The inverse to F , which we will denote by F ′, is the map that takes
P ′ to P . That is, it projects P ′ onto the sphere and then projects this
spherical point up to the disk, to point P . From our work in Chapter 16
on stereographic projection, we know that the equation for F ′ will be

F ′(x, y) = ( 2x
1 + x2 + y2 ,

2y
1 + x2 + y2 )

How do the maps F and F ′ act on lines in their respective domains?

Let l be a Klein line. Projecting l
orthogonally downward will result
in a circular arc c on the sphere
that meets the unit circle (equa-
tor) at right angles. Since stere-
ographic projection preserves an-
gles and maps circles to circles,
stereographic projection of c back
to the unit disk will result in a cir-
cular arc that meets the unit circle
at right angles—a Poincaré line.

N

l

P

c

P’

l’

We see, then, that F maps Klein lines to Poincaré lines, and it pre-
serves the ideal points of such lines, as the points where such lines meet
the unit circle are not moved by F . Thus, F preserves the notions of
point and line between the two models.

What about the notion of angle? Let’s review the construction of a
perpendicular in the Klein model. Recall that the pole of chord AB in
a circle c is the inverse point of the midpoint of AB with respect to the
circle. We defined a Klein line m to be perpendicular to a Klein line l
based on whether l was a diameter of the Klein disk. If it is a diameter,
then m is perpendicular to l if it is perpendicular to l in the Euclidean
sense. If l is not a diameter, then m is perpendicular to l if the Euclidean
line for m passes through the pole P of l.
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Here are two lines l = AB and
m that are perpendicular in the
Klein model.

A

B

l

m

Pole(l)

Since the pole of chord AB is also the intersection of the tangents
at A and B to the circle, we see that the pole of AB will also be the
center of the circle passing through A and B that is orthogonal to the
unit circle. That is,

Lemma 17.20. The pole of the Klein line l = AB will be the center
of the orthogonal circle defining the Poincaré line F (l).

We can now prove that F preserves orthogonality between the mod-
els.

Theorem 17.21. Two Klein lines l and m are perpendicular if
and only if the corresponding Poincaré lines F (l) and F (m) are
perpendicular.

Proof: There are three cases to consider. First, suppose l and m are
both diameters. Then, F (l) and F (m) are both diameters, and perpen-
dicularity has the same (Euclidean) definition in both models.

Second, suppose l is a diameter and m is not and suppose that l
and m are perpendicular. Then, the diameter l bisects chord m and thus
passes through the pole ofm. Now, F (l) = l and since the center of F (m)
is the pole of l, F (l) must pass through the center of F (m). This implies
that l is orthogonal to the tangent line to F (m) at the point where it
intersects l = F (l) (Figure 17.6), and so F (l) is orthogonal to F (m).
Reversing this argument shows that if F (l) and F (m) are orthogonal,
then so are l and m.



Hyperbolic Transformations � 249

m

l

F(m)

Pole(m)

Figure 17.6

Last, suppose both l andm are not diameters of the unit circle. Then,
l passes through the pole of m and vice versa. Also, these poles are the
centers of F (l) and F (m) (Figure 17.7).

Suppose F (m) is perpendicular to F (l) (in the Poincaré sense). Let
P and Q be the points where F (m) meets the unit circle. Let c be the
circle on which F (l) lies and c′ be the circle on which F (m) lies. By
Corollary 2.45, we know that inversion of c′, and the unit circle, through
c will switch P and Q. This is due to the fact that both c′ and the unit
circle are orthogonal to c, and so both will be mapped to themselves by
inversion in c. Thus, P and Q are inverse points with respect to c, and
the line through P and Q must go through the center of c (the pole of
l). Then, m is perpendicular to l in the Klein sense.

Q

P

c’

l

Pole(l)

m

F(l)

c

Pole(m)

F(m)

Figure 17.7
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Conversely, if m is perpendicular to l in the Klein sense, then the
(Euclidean) line for m intersects the pole of l (the center of circle c).
Since the unit circle and c are orthogonal, the unit circle is mapped to
itself by inversion in c. But, the inverse to P is the unique point that
lies on the ray through the center of c and P (and on the unit circle)
that gets mapped to another point on the unit circle. Thus, the inverse
to P must be Q, and by Theorem 2.44 we have that c′ is orthogonal to
c, and the lines are perpendicular in the Poincaré sense. 2

Since F preserves the definition of right angles between the Poincaré
and Klein models, this gives us a natural way to define all angles in the
Klein model: we will define the measure of a Klein angle to be the value
of the Poincaré angle it corresponds to.

Definition 17.5. Given three points A′, B′, C ′ in the Klein disk,
the measure of the Klein angle defined by these points is the value
of ∠ABC in the Poincaré model, where F (A′) = A, F (B′) = B,
and F (C ′) = C.

With this definition, F is a one-to-one map from the Klein model
to the Poincaré model that preserves points and lines. F will be an
isomorphism between these models if we can show that F preserves the
distance functions of the models.

To show this, we will borrow a couple of results from the next chap-
ter on isometries in Hyperbolic geometry. Just as there are Euclidean
isometries that will take any Euclidean line to the x-axis, so there are
transformations in the Klein and Poincaré models that preseve the Klein
and Poincaré distance functions and that map any line in these models
to the diameter of the unit disk.

If we assume this property of the two models, then to show F pre-
serves the distance functions of the models, it is enough to show that
F preserves distances for hyperbolic lines that lie along the x-axis in
the unit circle. Equivalently, we can show the inverse map F ′ preserves
distances along such lines.

Theorem 17.22. Let P = (x1, 0) and Q = (x2, 0) be two points in
the Poincaré disk. Then

dP (P,Q) = dK(F ′(P ), F ′(Q))
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Proof: By definition of dP we have

dP (P,Q) =
∣∣∣∣ln(1 + x1

1− x1

1− x2

1 + x2
)
∣∣∣∣

Also, since stereographic projection maps any diameter of the unit
circle to itself, we have

dK(F ′(P ), F ′(Q)) = 1
2

∣∣∣∣ln(1 + u1

1− u1

1− u2

1 + u2
)
∣∣∣∣

where F ′(P ) = (u1, 0) and F ′(Q) = (u2, 0).
We know that F ′(x, 0) = ( 2x

1+x2 , 0). So,

1± u1 = 1± 2x1

1 + x2
1

= (1± x1)2

1 + x2
1

and similarly for u2.
Thus, we get

dK(F ′(P ), F ′(Q)) = 1
2

∣∣∣∣∣∣ln(
(1+x1)2

1+x2
1

(1−x1)2

1+x2
1

(1−x2)2

1+x2
2

(1+x2)2

1+x2
2

)

∣∣∣∣∣∣
= 1

2

∣∣∣∣ln((1 + x1

1− x1

1− x2

1 + x2
)2)
∣∣∣∣

= 1
22
∣∣∣∣ln(1 + x1

1− x1

1− x2

1 + x2
)
∣∣∣∣

=
∣∣∣∣ln(1 + x1

1− x1

1− x2

1 + x2
)
∣∣∣∣

= dP (P,Q)

2
We conclude that the map F is an isomorphism of the Klein and

Poincaré models. That is, any geometric property valid in one of these
models must be valid in the other model and vice versa.




