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A R T I C L E S

Depth and Symmetry in Conway’s M13 Puzzle
JACOB A. S IEHLER

Washington & Lee University
Lexington, VA 24450

siehlerj@wlu.edu

Have you met M13?

In a short 1997 article [5], John Conway describes a sliding-piece puzzle called M13,
which bears the same relation to the Mathieu group M12 as the famous 15-Puzzle bears
to the alternating group A15 (the latter summed up neatly by Aaron Archer [2]). Much
more information on the puzzle appeared in a subsequent, highly enjoyable article by
Conway, Elkies, and Martin [8]. My first reaction on discovering the M13 articles was
a somewhat unscholarly exclamation (“Play!”), so I implemented a clickable version
of the puzzle on my computer [16]. A 15-puzzle veteran, I assumed I was equipped
to solve M13 with minimal effort, but my endgame was vexed by the tricky moves.
Should you find it similarly vexing to solve by hand, you will find a solution in the
final section. However, I also found the game an excellent way to learn a bit more
about the inner (and outer) workings of two much-renowned groups. The main results
of this article will explain which algebraic symmetries of the abstract group M12 are
compatible, in a certain sense, with the puzzle structure of M13 by connecting them to
geometric symmetries of the playing surface.

The board for Conway’s game is a “projective plane of order 3,” which consists of
thirteen points and thirteen lines. Each line contains four points, each point belongs
to four lines, and any two lines intersect in a unique point. We won’t worry about any
more general definition of projective planes; you can read all about them in Stevenson’s
book [17] or many others. FIGURE 1 shows the particular 13-point plane that we will
be using.
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Figure 1 Numbered tiles on a projective plane of order 3
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The points of the plane are numbered 1–13, clockwise around the circle, and points
1–12 begin the game with like-numbered tiles on them. Point 13 begins with no tile
upon it, and is thus deemed, for the time being, the “holy point.” Lines of the plane
are depicted by the dots around the circle, each dot connected to four points of the
plane which constitute a line. With our numbering scheme, lines of the plane all have
the form {i, i + 1, i + 5, i − 2}, where i ranges from 1 to 13, and all the numbers are
reduced mod 13.

There is only one type of legal move in the game: Choose any point of the plane with
a tile on it, and move that tile to the current holy point (which incidentally makes your
chosen point the new holy point). At the same time, swap the two tiles on the other
points of the line which connects your point to the holy point. FIGURE 1 illustrates
what happens if we move tile 4 to the holy point from the initial configuration. Pay
attention to points 10 and 12, which complete the line containing 4 and 13.

Conceptually, it can be more convenient to think of the hole moving, and to de-
scribe a longer sequence of moves we’ll simply list in succession the points the hole
visits, in square brackets. For example, FIGURE 2 shows the results of playing two
longer sequences, [1, 2, 4, 13] and [1, 2, 13, 6, 12, 13]. Verify these to check your un-
derstanding of the rules.
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Figure 2 Two move sequences and the resulting permutations of the tiles

Since both of these sequences return the hole to point 13, they can be viewed as
permuting the twelve numbered tiles. In cycle notation, the first sequence induces the
permutation (1 4 2)(5 11 9)(6 10 12), and the second induces (3 7)(4 10)(5 11)(8 9).
Note how to read the cycles in game terms: whatever position you happen to start with,
the first sequence will send the tile on point 1 to point 4; the tile on point 4 to point 2;
and so on. Sequences such as these which return the hole to point 13 are called closed
sequences, and the corresponding permutations can be composed to form a subgroup
of S12, which we’ll call the game group, or G for short. If we think of the hole as just
another tile numbered 13, to which special rules apply, then we can think of the game
group as a subgroup of S13 (whose elements all leave the 13th tile fixed). It is properly
contained in the set of all permutations in S13 that can be achieved by legal moves. This
larger set is what Conway refers to as M13. M13 is not a closed set under composition
of permutations (the rules of the game place restrictions on which permutations can
be legitimately composed), and it is not our primary interest here, although it was this
larger set which originally motivated the game.

The point of all this as a puzzle, of course, is to start from a scrambled position such
as the ones in FIGURE 2 and find a sequence of moves that returns the tiles to their
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initial positions. The slippery, indirect moves make this a challenge to solve intuitively,
even though the puzzle has far fewer positions than other familiar permutation puzzles
such as Rubik’s Cube or the Fifteen Puzzle mentioned above.

One game, two simple groups

M13 and the 15-puzzle both generate interesting permutation groups as their pieces are
scrambled. But compared to the rectangular grid of the 15-puzzle, the plane on which
M13 tiles move has a rich group of symmetries in its own right. It is primarily the inter-
play between that group of geometric symmetries and the game group G (determined
by the tile-sliding rules) which I want to explore. The next two theorems gather up the
basic facts about these two groups.

THEOREM 1. The game group is isomorphic to the Mathieu group M12, a simple
group of order 95,040 which acts sharply 5-transitively on a 12-element set.

Just what is M12? Part of the reason it still fascinates us more than a century after
its discovery is that there are many equally good answers to that question, involving
everything from twisting and sliding puzzles to card shuffling to codes. Joyner gives
a nice view of M12’s many faces [12], and there is still more in Conway and Sloane’s
weighty reference [7]. For the present purposes, it suffices to know that M12 is our
game group, and that its deep and varied connections make it worth exploring from
any accessible angle.

The isomorphism assertion connecting this game to other definitions of M12 is
proven in the paper of Conway, Elkies, and Martin [8]. “Acts sharply 5-transitively”
simply means the following: choose your favorite five tiles and your favorite five points
for them to live on (an ordered choice). Then there is one and only one position in the
game that puts your chosen five tiles on your chosen five points. For example, FIG-
URE 2 shows the one and only legal position with tiles 2, 4, 3, 1, and 9 on the first
five points (in that order). This may sound like an unremarkable property for a group
to have, but quite the opposite is true: The property of acting sharply 5-transitively
on a 12-element set characterizes this group uniquely up to isomorphism. Dixon and
Mortimer [9] give a nice summary of sharply k-transitive group actions, in addition to
their easy-to-follow construction of M12 and the other Mathieu groups.

We can (and we will) understand some features of the game group better if we
also pay attention to the symmetries of the playing surface—the projective plane. That
gives us another set to consider inside S13, namely, the permutations in S13 which
preserve the plane’s structure (entirely independent of whether they can be achieved
by legal moves in the game). Preserving structure in this sense means that lines must
be mapped to lines, and permutations that do this will be called plane automorphisms.
For example, the picture of the plane we’ve used in FIGURE 1 makes at least one small
family of plane automorphisms clear: we can simply rotate the figure one or more
clicks clockwise, inducing a 13-cycle of the points which clearly sends each line to
another line. Such permutations can be composed to give a group, which we’ll call
the plane group. It is known by various notations, including PGL(3, 3), which is most
suggestive of its role here. Much the way that an ordinary linear transformation can be
described by its action on a basis, an element of our plane group can be described by
its action on a suitable set of points in the plane: an ordered oval is an ordered set of 4
points in the plane, no 3 of which belong to a line.

THEOREM 2. The plane group is a simple group of order 5,616 which acts sharply
transitively on ordered ovals.
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This group belongs to an infinite family of finite simple groups, the projective spe-
cial linear groups, and you can find an accessible proof that they are simple in the
textbook of Beachy and Blair [3]. The transitivity assertion is proven in an elementary
way in [8].

In both of the preceding theorems, the order of the group can be inferred from
the transitivity assertion, as follows. In the case of M12, any given selection of 5 tiles
can be put in 12 × 11 × 10 × 9 × 8 = 95,040 different positions (and elements of
the group are in one-to-one correspondence with such ordered selections). In the case
of the plane group, you need to count the number of ordered ovals: choose any two
points (13× 12), choose a third point off the line they determine (9 possibilities), and
one more point off the three lines that have been determined so far (4 possibilities);
all together, 13 × 12 × 9 × 4 = 5,616 ordered ovals, in one-to-one correspondence
with elements of the plane group. The plane group also acts transitively on the points
of the plane (this follows from transitivity on ovals, or more simply from the order
13 rotational symmetry we’ve already pointed out), so the stabilizer of any particular
point—say, number 13—is a subgroup of order 5616/13 = 432 = 24

· 33.

Geometrically related sequences

As an example of interaction between the game and the plane group, let’s look at some
ways we can transform move sequences while preserving the cycle structure of their
permutations.

An easy first example of such a transformation is the reversal of sequences: The
inverse of [a1, a2, . . . , an, 13] is achieved by [an, an−1, . . . , a1, 13], so these two se-
quences induce permutations of the same cycle type. The reversal would look more
literal if I followed the convention of Conway and included a 13 at the beginning of
the sequence to indicate the starting position of the hole, but I will still just refer to this
as reversal.

Earlier I suggested that we might think of the hole as simply an invisible “tile
number 13,” to which special rules apply. We can easily imagine a variant game in
which another numbered tile is the special one—call it an x-type game if tile x plays
the “holy role.” With this in mind, consider a move sequence S = [a1, a2, . . . , an]

and a plane automorphism φ. We can apply φ term-by-term to S to obtain φ(S) =
[φ(a1), φ(a2), . . . , φ(an)]. If S is a closed sequence, inducing an element in the game
group, then φ(S) is a closed sequence for a φ(13)-type game, and would induce an
element in the corresponding game group. This would have the same cycle type as
S—the cycles of φ(S) are merely the cycles of S, “relabelled” by φ. We could say that
two sequences related by a plane automorphism in this way are isomorphic sequences;
this is an equivalence relation, and what we have just said as that isomorphic sequences
induce the same type of permutation.

There is a weaker equivalence relation, slightly less obvious, which still gives the
same implication for induced permutations. Consider a move sequence for the basic
game, say,

S = [a1, a2, . . . , an, 13]

If we rotate this sequence one step to the left to obtain

S1 = [a2, a3, . . . , an, 13, a1],

we see that S1 is a closed sequence for an a1-type game. It will induce a permutation in
that game of the same type as S. To see this, it helps to temporarily adopt an expanded
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notation for moves—let a parenthesized pair (xy) denote sliding the hole from x to y.
Using this notation,

S1 = (13a1)(a1a2)(a2a3) · · · (an13)

= (a113)(13a1)(a1a2)(a2a3) · · · (an13)(13a1)

= (a113) S (13a1),

and so S1 is simply a conjugate of S, which will induce a permutation of the same
cycle-type (on an an-type game) as S does on the ordinary game. This can be iterated; if
Si denotes the move sequence S rotated i terms to the left, then Si is a closed sequence
for an ai -type game which induces a permutation of the same cycle type as S does on
the ordinary game.

PROPOSITION 1. If S and T are closed sequences (for the standard game) and T
can be obtained from S by (1) applying any plane automorphism to the terms of S, (2)
reversing and/or rotating the resulting move sequence any number of positions left or
right, then T and S induce permutations of the same cycle type.

This gives each move sequence for the ordinary game a large class of sequences of
the same length which behave “the same,” at least as far as cycle structure. This can
be helpful in reducing the amount of computation needed to study move sequences of
moderate length.

Plane automorphisms within the game group

Once I learned to play the game well and unscramble the tiles reliably, I began looking
for other amusements, and the question of realizing plane automorphisms via legal
moves in the game was a challenge that occurred naturally—somewhat like the pastime
of constructing pretty patterns on Rubik’s cube. The prettiest patterns on the cube,
generally, are the ones that capitalize on its symmetry in some way.

Of course, most permutations in M13’s game group are not plane automorphisms.
The first example in FIGURE 2 is typical: the line connecting points 1 and 2 in the
plane now contains tiles {2, 4, 10, 12} which do not constitute a line of the plane. Of
course, that must be true simply by cardinality (the game group is far larger than even
the entire plane group), but experimenting with short move sequences might make you
wonder whether there are any legal moves which send the tiles of each line to the
points of another line. Consider the second example in FIGURE 2, however. If you find
it tedious to inspect all thirteen lines to verify that this move does indeed result in a
plane automorphism, a suitable drawing of the plane (FIGURE 3) can reveal it “at a
glance” as a reflection of the plane across the line {1, 2, 6, 12}. In fact, any sequence
of the form [a, b, 13, c, d, 13] where {a, b, c, d} form a line not incident with point
13 will induce a plane automorphism with a similar reflection picture. In FIGURE 3,
we’ve taken the liberty of doubling points on the line {2, 3, 7, 13} in order to put as
much symmetry on display as possible. If you like, you can imagine stitching the
boundary together so that antipodal points are identified, eliminating the doubling—
and incidentally embedding our diagram in the real projective plane RP2—but you’ll
have to imagine it on very stretchy material. The model of the plane used in FIGURE 3
can be found in many references on projective planes. Polster’s book [14] gives it and
several other useful pictures that we’ll be using here.

Once you’ve found a few automorphisms in the game group, it’s hard to resist won-
dering just how many you can find. I’d like to answer that question gradually, starting
with a very distinguished set. The paper of Conway, Elkies, and Martin [8] identifies
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Figure 3 Projective plane exhibiting reflective symmetries

eight positions in the game group which require the maximum number of moves—
nine moves, as they show there—to achieve from the start position (or equivalently,
to return to the start position). Together with the identity, those eight form an abelian
group of order 9, in which every nonidentity element has order 3. We denote this group
T ; it is generated by

θ = [9, 1, 13, 2, 4, 3, 7, 10, 13] = (1 5 11)(6 9 8)(4 10 12)

and

ω = [10, 1, 11, 12, 5, 13, 7, 9, 13] = (2 3 7)(4 10 12)(6 8 9).

Once it occurs to you to check, you can verify that θ and ω are both elements of
the plane group, but in the case of θ , I hope the picture of the plane in FIGURE 4 is
more enlightening than a line-by-line audit. Several points (numbers 2, 3, and 7) may
appear to be missing from FIGURE 4, but they are tucked away behind 13 on an axis
perpendicular to the printed page. Also, the circular “lines” each seem to be missing
a point, but each of them contains one of the points 2, 3, or 7 on that central axis.
This picture is uncomfortable in two dimensions; it would prefer to be seen as a torus,
with the fixed points on the central axis and other lines of the plane as “lines” of slope
0, 1, and −1 wrapping around it. But either way you picture it, there is a rotational
symmetry of order 3 which is precisely θ , and you can provide a similar picture to
show that ω can also be considered as an order 3 rotational symmetry of the plane.
It follows that all the elements of the “maximum depth group” T belong to the plane
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group as well, and they all have similar geometry: one line through point 13 is fixed
(pointwise) as the axis of rotation, while the other three points in each of the remaining
lines through point 13 move in a 3-cycle. Now, consider one more move sequence and
its associated permutation,

ζ = [4, 9, 11, 6, 8, 10, 5, 13] = (1 11 5)(2 10 6)(3 12 8)(4 9 7),

and yet another picture of our plane (FIGURE 5) to show that ζ is also a plane auto-
morphism.

This ζ normalizes the group T generated by θ and ω—you can check this directly,
or see Proposition 3 below. All together, then, they generate a group of order 27 which
belongs to the intersection of the game group and the plane group. Since 432 = 24

· 33,
we have found a Sylow 3-subgroup in that intersection.

In constructing a Sylow 2-subgroup in the intersection, we will again rely on figures.
FIGURE 6 shows one more, partially completed model of the projective plane. Rotating
the hook-shaped “line” through multiples of π/4 supplies the remaining lines of the
projective plane, which I’ll omit for clarity.
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Figure 6 Partial diagram of the plane. Reflection doesn’t carry lines to lines. . .

The completed model obviously has a rotational symmetry of order 8; call it ρ.
In cycle form, ρ = (1 2 6 12)(3 8 10 5 7 9 4 11), and this can be achieved in the
game group as ρ = [7, 6, 8, 12, 6, 3, 4, 13]. The figure may appear to have reflective
symmetry across the four lines that appear as diameters of the circle, but this is not
the case. Simply reflecting points across, say, the horizontal diameter as shown, we
find that the line {9, 12, 11, 13} has not been carried to another line of the plane. The
lines in the model have a counterclockwise orientation, if you follow them from short
end to long end as indicated by the arrowheads. Reflection reverses that orientation.
However, we can fix this with just a small adjustment: give the four emphasized points
in FIGURE 6 an additional 180◦ twist, and all the lines have been restored to their
proper orientation in FIGURE 7. I have left just one of the hook-shaped lines in the
diagram; you can pencil in its rotations to check that they are actually lines of the
plane.

Let’s call this reflection-with-a-twist τ = (1 6)(5 8)(9 11)(4 10). It belongs to the
game group as, for example, τ = [12, 7, 3, 12, 2, 13]. You can compute that τρτ−1

=

ρ3 (use the picture!), so τ and ρ generate a group of order 16 which is a Sylow sub-
group in the intersection of the game group and the plane group. If τ were literally a
reflective symmetry of this model, we would have the familiar dihedral group of order
16; as it is, our reflection-with-a-twist generates what is known as the quasidihedral
group or semidihedral group of order 16. Usage varies, but the latter term is used by
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Figure 7 . . . but that can be corrected with an additional twist.

Wild [18] in his round-up of groups of order 16. The projective plane diagrams above
are the simplest geometric representation I know for this group. And with plane au-
tomorphism groups of order 33 and 24 inside the game group, we have proven the
following:

PROPOSITION 2. The game group contains all 432 plane automorphisms which
leave point 13 fixed.

For the remainder of the paper, let P denote this 432-element subgroup of the game
group. P can be presented with just two generators; ζ and τ will suffice, in fact, and
with access to computer algebra systems it is easy to find such pairs of generators—
but it is also satisfying to see automorphisms which generate the Sylow subgroups,
concretely and geometrically. Both the game group of order 95040 and the plane group
of order 5616 can also be presented with two generators. See the short articles of Leech
[13] and Bisshopp [4] for specific generators, if you like.

A few terms and definitions

These plane automorphisms within the game group play a special role in the following
sections, where we will study group automorphisms of M12 and how they relate to
the extra structure provided by the rules of Conway’s game. A quick review of some
standard definitions and facts may be useful before we go on. Since we’ve committed
the letter G to denoting our game group, let H stand for any finite group.

The set Z(H) = {x ∈ H |xh = hx, ∀h ∈ H} is known as the center of H . It’s
routine to check that Z(H) is a normal subgroup of H , so, in particular, the center of
a nonabelian simple group like G is trivial.

The automorphisms of H themselves form a group under composition, which is
denoted Aut(H). An inner automorphism of H is an automorphism of the form x 7→
hxh−1 (“conjugation by h”) for some fixed h ∈ H . These form a subgroup of Aut(H),
denoted Inn(H). There is a surjective homomorphism from H to Inn(H) (namely,
mapping each h ∈ H to the “conjugation by h” automorphism), the kernel of which is
none other than Z(H). Thus, if Z(H) happens to be trivial (as in the case of G), then
this mapping is injective; each element of H represents a distinct element of Inn(H).

Elements of Aut(H) which are not inner automorphisms are called outer automor-
phisms. A final routine fact is that Inn(H) is a normal subgroup of Aut(H), and the
quotient group Aut(H)/Inn(H) is denoted Out(H), the outer automorphism group of
H . Confusingly, the elements of Out(H) are not outer automorphisms; they are equiv-
alence classes of automorphisms. Two elements α and β in Aut(H) represent the same
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class in Out(H) if and only if α can be expressed as the composition of β with some
inner automorphism of H .

With definitions in hand, it is now time to identify, precisely, the “extra structure”
that I have been referring to.

Depth and automorphisms of the game group

The depth of a position in the game group is the minimum number of moves required
to solve that position (or, equivalently, to achieve it from the initial state). Depth is not
a purely group-theoretic notion. It comes, essentially, from the choice of generators
that we are allowed by the legal moves of the game—and that means that there’s no
reason to expect automorphisms of the game group to preserve depth. Elements of the
subgroup P , however, do give us examples:

PROPOSITION 3. Conjugation by a plane automorphism in the game group pre-
serves depth: That is, if φ ∈ P and α ∈ G, then α and φαφ−1 have the same depth.

Proof. Let S = [a1, a2, . . . , an, 13] be a sequence of moves that induces α, and
consider φ(S) = [φ(a1), φ(a2), . . . , φ(an), 13]. It’s easy to see how φ(S) must act on
the tiles: if S carries the tile on point x to point y, then φ(S) carries the tile on point
φ(x) to point φ(y). But that is precisely how φαφ−1 acts, so φ(S) is a sequence that
achieves φαφ−1. Thus for every sequence that achieves α there is a sequence of the
same length that achieves φαφ−1, and vice versa of course, using φ−1 in place of φ.

In the present case, conjugation by elements of P provides 432 inner automor-
phisms of G which preserve depth (432 distinct automorphisms, in fact; you can de-
duce this from the fact that G is simple). And that’s all there are:

PROPOSITION 4. G has precisely 432 inner automorphisms which preserve depth.

Proof. Since the previous proposition shows there at least 432, we only have to
show that there are no more than 432. Consider the element

θ = [9, 1, 13, 2, 4, 3, 7, 10, 13] = (1 5 11)(6 9 8)(4 10 12)

We have already mentioned that all the (nonindentity) elements of the maximum-
depth group T have the same cycle structure as θ—the fixed points constitute a line
through point 13, and each of the remaining lines through 13 has its three remaining
points permuted in a three-cycle. Thus, if conjugation by α carries θ to another element
of T , α must carry the set {1, 5, 11} to a set of three points which are collinear with 13,
and there are 12× 2 ways to do this. Once the image of that set is determined, there
are only six choices for α(6) and then three choices for α(4). And at this point, if α
belongs to G, it is uniquely determined, since G is sharply 5-transitive. Thus there are
at most 12× 2× 6× 3 = 432 such elements α in G.

Outer automorphisms

Our game group has more than inner automorphisms, but not much more; it is a fact
that the outer automorphism group of M12 has order two [6]. That means any two
outer automorphisms of M12 represent the same class in Out(M12), and differ from
one another only by composition with some inner automorphism. Conway et al. [8]
show how one such outer automorphism can be discovered using a “dualized” version
of the M13 game in which one slides lines as well as points. We will not duplicate that
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exposition here, but simply rely on their work to produce an explicit representative of
the nontrivial class of outer automorphisms. To describe our automorphism, we’ll need
a set of generators for the game group. The following two (chosen fairly arbitrarily)
suffice.

x = [4, 11, 3, 4, 13] = (1 8)(3 11)(6 7)(9 10)

and

y = [8, 7, 11, 3, 4, 12, 1, 13] = (1 8 10)(2 6 4)(3 5 9)(7 12 11)

We won’t verify directly that they are generators, but they satisfy the relations for
the presentation given in the online Atlas of Finite Group Representations [1]. By
following the dualization construction (making the necessary adjustments for the dif-
ferent labeling of points in our projective plane) we can produce a specific outer auto-
morphism of the game group, namely F , which acts on the generators above by

F(x) = (1 10)(2 8)(3 6)(5 11)

and

F(y) = (1 12 6)(4 9 5)(8 11 10)

You can check that these satisfy the same relations as x and y, so we do have an
automorphism (it’s easily checked once it’s presented, but finding it would be difficult
without a clever construction such as dualizing). Is it depth-preserving? Recall our
maximum-depth element θ = (1 5 11)(6 9 8)(4 10 12) from the section on plane
automorphisms. We can express θ in terms of our generators, θ = (xy)3 y(xy)−3 y−1,
from which we can compute F(θ) = (1 12 6)(4 9 5)(8 11 10), which is not one of
the eight elements in subgroup T , so F is not depth-preserving. But note that a similar
calculation with generators shows that F(ω) = θ , so F does send ω to another element
at depth 9.

It is still plausible that some other outer automorphism of G might be depth-
preserving. A little computer assistance helps to rule this out; the computer can easily
give us a list of the conjugacy classes and their sizes in the game group. The list of
15 classes in TABLE 1 shows each class’s cycle type in addition to its size. The same
information is available in the Atlas [6].

TABLE 1: Conjugacy classes in M12 (arbitrarily numbered)

Class Cycle type Size Class Cycle type Size

1 Identity 1 9 34 2640
2 24 495 10 42 2970
3 26 396 11 4 · 8 11880
4 22

· 42 2970 12 52 9504
5 2 · 3 · 6 15840 13 62 7920
6 2 · 8 11880 14 11 8640
7 2 · 10 9504 15 11 8640
8 33 1760

Now, consider an element from the 42 class, such as z = [2, 10, 3, 7, 8, 13] =
(5 9 6 12)(7 10 8 11). By expressing z in terms of x and y (a little tedious) we can
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compute that F(z) = (1 12)(7 10)(2 3 8 11)(4 5 9 6), in the 22
· 42 class, so F ex-

changes these two classes, and every outer automorphism of G must do the same.
Those classes, as it turns out, both contain elements at depth 6 and 7 only. But they
differ in their distribution. See TABLE 2, which was computed with Mathematica.
Thus, every outer automorphism of G moves elements from depth 6 to depth 7 and
vice versa. And with that, we have proven:

TABLE 2: Distribution by depth for two conjugacy classes

Class Cycle type Depth 6 Depth 7

4 22
· 42 972 1998

10 42 1188 1782

PROPOSITION 5. The game group G has precisely 432 automorphisms which pre-
serve the depth of every element in the group, namely, conjugation by the 432 elements
of the plane automorphism subgroup P.

We can now deduce one further result which identifies the subgroup T as the es-
sential “test case” for depth-preserving automorphisms. The proof of Proposition 4
actually shows that an inner automorphism which preserves the subgroup T preserves
the depth of every element in G. And as we have remarked, any outer automorphism
of M12 is simply the composition of our particular F with some inner automorphism.
Consider F followed by conjugation with some element g. F(ω) = θ ∈ T , so if
gF(ω)g−1 also belongs to T , then we know that g is a plane automorphism, and
gF(x)g−1 has the same depth as F(x) for every x ∈ G. In particular, we computed
that F(θ) /∈ T , so gF(θ)g−1 /∈ T . Thus, every outer automorphism sends some ele-
ment of T , either ω or θ , to an element of strictly lower depth, and we have proven the
following tidy (and surprising) result.

PROPOSITION 6. An automorphism of the game group G preserves the depth of all
elements if and only if it preserves depth for the eight maximal-depth elements in the
group.

It would be interesting to see if a similar result holds for other permutation puzzles,
such as the Skewb or the Pyraminx, which have a small number of positions at the
maximum depth. These puzzles are described in Hofstadter’s popular article [11] and
Joyner’s more recent book [12], but the best source for information about the distribu-
tion by depth in these puzzles is online [15].

Solving M13 by hand

In one sense, the “optimal” algorithm for solving the puzzle is what puzzlers some-
times refer to as God’s Algorithm (this term was at least popularized, if not originated,
by Hofstadter [10])—since there are a finite number of positions, simply memorize
the shortest solution for each one! This is not practical for human puzzlers, however,
and the algorithm given by Conway et al. [8] is also not practical if we don’t wish
to rely on computerized assistance. What follows is an admittedly idiosyncratic set of
moves that can be memorized easily and will suffice to unscramble the puzzle from
any scrambled state (provided that the scrambled state was obtained by legal moves in
the first place). In order to guarantee visible progress as we proceed through the puzzle
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we will position tiles one at a time, and rely on the magic of sharp transitivity to ensure
that the puzzle is solved precisely when we slide the fifth tile into its proper position.
Of course, at each step we want to preserve the tiles we have already positioned cor-
rectly, and that means we work in progressively smaller subgroups—the stabilizers of
our growing set of correctly positioned tiles.

Stage 1: Position tile 1 That is, position tile 1 on point 1, leaving point 13 unoccu-
pied. This can be done intuitively from any position with a closed sequence of just 3
moves, and is left as an exercise to ensure familiarity with the rules of the game. Al-
though this is simple, you’ll find you need to vary your strategy depending on whether
the point which holds tile 1 is colinear with points 1 and 13, or not (with the colinear
case requiring a bit more indirection).

Stage 2: Position tile 3 From this point on, we will only use move sequences that
fix the tile on point 1. That restricts us to a subgroup of order 11!/7!—which is, inci-
dentally, the group known as M11. Since 11 is a prime divisor of the order, there must
be an element of order 11 in the group by the well known theorem of Cauchy. Such
an element could only act as an 11-cycle on tiles 2–12. Thus the puzzler who has a
rabid preference for minimizing the number of cases to consider need only find a short
sequence of moves which induces such an 11-cycle, and repeat that sequence until tile
3 is returned home. For example, either of the sequences

[4, 5, 6, 7, 8, 13] or [2, 4, 6, 8, 10, 13]

is very easy to remember and induces an 11-cycle leaving the tile on point 1 fixed.
Simply repeat until tile 3 has returned home. Realistically, though, this stage requires
only 3 or 4 moves, and can be carried out (after a little practice) without relying on
memorized sequences.

Stage 3: Position tile 5 One of the sequences in FIGURE 8 can be applied (perhaps
repeatedly) to return tile 5 home while preserving the tiles on points 1 and 3. Each of
them actually induces a double 5-cycle, but the illustration shows only the cycle which
moves tiles to and from point 5. Simply choose a cycle which contains tile 5 and repeat
the sequence until it returns home.
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α = [4, 5, 7, 6, 13] β = [8, 5, 2, 10, 13] γ = [4, 2, 11, 6, 13]

Figure 8 Move sequences for Stage 3.
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Stage 4: Position tile 7 Very similar to the previous stage: the three sequences in
FIGURE 9 almost suffice to return tile 7 home. Again, each of them induces a double
4-cycle, but we’ve only shown the relevant part in the figure. The sequences are quite
easy to remember, all having the form [1, x, 5, 11, y, 13].
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ρ = [1, 12, 5, 11, 6, 13] σ = [1, 12, 5, 11, 4, 13] τ = [1, 7, 5, 11, 10, 13]

Figure 9 Move sequences for Stage 4.

Three 4-cycles don’t quite suffice to cover all the possibilities. If tile 7 happens to
be on point 12 at this stage, you can execute [8, 10, 13] to move it safely to point 4,
and then apply ρ. (Since the stabilizer of {1, 3, 5} has order 72, we can’t use 5-cycles
at this stage. There are elements of order 6 in the stabilizer, and you might hope to
find a pair of 6-cycles which would cover all the possibilities at this stage, but a quick
search on the computer shows this is not possible.)

Stage 5: Position one more tile At this stage we are trying to preserve the position of
tiles 1, 3, 5, and 7, which means we are working in a subgroup of only 8 elements! The
two sequences in FIGURE 10 suffice to generate the group (and it’s easy to check that
the group they generate is isomorphic to the familiar quaternion group of 8 elements).
If some power of i or j will suffice to return any tile home, great! Otherwise execute
i , and then either j or j−1 will complete the solution. If you should find that you have
five tiles on the correct points but the puzzle still isn’t solved, then it never will be
solved by further legal moves; it’s in a state that lies outside the game group. As a little
optimization, note that i2 and j2 induce the same permutation of order 2, which can be
achieved more efficiently by the sequence [8, 10, 13].

Working down through stabilizers in this way is a simple-minded strategy and is
generally very far from providing the shortest possible solution. However, I do hope
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i = [6, 3, 9, 5, 10, 13] j = [4, 1, 12, 3, 8, 13]

Figure 10 Move sequences for Stage 5
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you will have the opportunity to try it with a playable model of the puzzle. I have
referred to the “magic” of sharp 5-transitivity, and the feeling that tiles are conspiring
to come into place just as I make my last move is still eerie, even though I have seen,
on paper, the proof that they must do so. M is for Mathieu, naturally, but a little time
playing with the M13 puzzle can remind us to keep words like marvelous and magical
in mind as well.
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