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o tricolor a pyramid of hexagonal 
cells, assign each cell one of 
the colors red, yellow, or green 
according to a single rule: each 
cell taken together with the two 
cells directly below it must be 

either (1) all three of the same color or (2) three 
different colors. The coloring on the left in figure 
1 is correct while the one on the right is not quite 
valid, as demonstrated by the marked cells.

Figure 2 has four puzzles to try as a warm-up. 
Each one has a unique red/yellow/green coloring 
that satisfies the single rule. Once you have 
completed the warm-up puzzles, try your hand at 
one of the two nine-row puzzles. 

If you find these examples interesting and 
want more to solve, you’ll find others at  
http://homepages.gac.edu/~jsiehler/games/
pyramids-start.html.

The solution to the nine-row puzzles can be 
found on page 26.

Jacob Siehler is an assistant professor of math 
at Gustavus Adolphus College. Read more about 
him and the mathematics involved in creating 
and/or solving these puzzles in his article 
“Tricolor Pyramids” on page 23.

10.1080/10724117.2019.1676106
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Figure 1. Valid and invalid colorings of a  
five-row pyramid. 

Figure 2. Four warm-up puzzles. 



Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=umho20

Math Horizons

ISSN: 1072-4117 (Print) 1947-6213 (Online) Journal homepage: https://www.tandfonline.com/loi/umho20

Tricolor Pyramids

Jacob Siehler

To cite this article: Jacob Siehler (2020) Tricolor Pyramids, Math Horizons, 27:3, 23-26, DOI:
10.1080/10724117.2019.1676117

To link to this article:  https://doi.org/10.1080/10724117.2019.1676117

Published online: 13 Jan 2020.

Submit your article to this journal 

View related articles 

View Crossmark data



www.maa.org/mathhorizons     Math Horizons | February 2020 23

ave you tried the coloring puzzles 
inside the front cover yet? 
These puzzles ask you to fill in a 
pyramid of hexagonal cells with 
three colors in such a way that 

each subpyramid of three cells (one on top and 
two on the bottom) has the property that all 
three cells are the same color or all three cells 
are different colors. Figure 1 shows both a valid 
and invalid coloring.

As with similar logic puzzles, the puzzle 
designer must place clues carefully to create a 
puzzle that is not too hard and especially not too 
easy. The front-cover puzzles, and those online 
(http://homepages.gac.edu/~jsiehler/games/
pyramids-start.html), have been chosen with 
care. While computer assistance is helpful in 
creating puzzles, understanding the underlying 
mathematics before jumping into computation 
can make the puzzles more interesting. 

Consider some basic questions that a would-
be puzzle designer should be able to answer: 
what is the minimum number of clues required 
to uniquely determine the solution to a puzzle, 
and when does a given set of clues suffice to 
determine a solution at all? Puzzle solvers  

will also want to know if there are methods 
to find solutions without guesswork and 
backtracking. At first glance, it might not even 
be clear what branch of math would help to 
answer these questions: logic? graph theory? 
combinatorics?

Colors to Numbers
In truth, this is an algebra puzzle arising from 
the simplest linear equation in three variables, 
namely a + b + c = 0. Suppose that our number 
system is not the real numbers, but �3, the field 
of integers modulo 3. In �3, the only numbers 
are 0, 1, and 2. To add/multiply numbers in �3, 
we add/multiply as usual but reduce the result 
to its remainder upon dividing by 3; table 1 
shows the addition and multiplication tables. 

In this number system, there are nine 
solutions to the equation a + b + c = 0: three 
where a, b, and c all take the same value in �3, 
and six where a, b, and c take all three different 
values in �3. Thus, this equation perfectly 
encodes the “all three the same or all three 
different” condition of the puzzle. We simply 
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Figure 1. Valid and invalid tricolorings of the 
five-row pyramid.

Table 1. Addition and multiplication modulo 3.
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replace colors with integers 
modulo 3—any assignment of 
the three colors to the three 
numbers 0, 1, and 2 will do. 
Here, we use 0 for red, 1 for 
green, and 2 for yellow.

Now, we can view the 
coloring rule for the pyramid 
as a system of linear equations 
over �3. For example, a three-
row pyramid can have its cells 
labeled with variables as in 
figure 2. 

Using the six variables, the coloring condition 
becomes the following system of three linear 
equations, which can be encoded into the matrix 
A shown to the right:

x x x
x x x
x x x

1 2 3

2 4 5

3 5 6

0
0
0

+ + =
+ + =
+ + =    

A=

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟

1 1 1 0 0 0
0 1 0 1 1 0
0 0 1 0 1 1

.

Each column of A represents a variable and 
each row represents an equation. The entries 
are given by the coefficient of the corresponding 
variable in the appropriate equation.

In general, the coloring condition for a 
pyramid with n rows translates to a system 
of n(n−1)/2 linear equations, each with three 
variables summing to zero in �3. The solutions 
to the linear system are precisely the valid 
colorings of the pyramid. This is an elegant 
representation of the problem, and it allows 
us to study colorings systematically using the 
techniques of linear algebra. For example, 
beginning with the matrix A for the system 
of equations above, there is a standard linear 
algebra algorithm that produces the matrix

N3

1 0 2 0 0 1
2 2 2 0 1 0
1 2 0 1 0 0

=

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟
.

The matrix N3 has interesting properties 
related to the coloring of the three-row pyramid.

1.  Each row of N3 yields a valid coloring of the 
three-row pyramid. For example, we interpret 
row 1 in N3, which is [1,0,2,0,0,1], as x1 = 1, 
x2 = 0, x3 = 2, x4 = 0 x5 = 0 and x6 = 1. Figure 3 
depicts the corresponding coloring.

2.  Every valid coloring of the three-row pyramid 
can be obtained by adding rows of N3 together, 
with repetition allowed. Row addition is 
performed component-wise, adding numbers 
in the same columns (modulo 3, as usual). For 

example, row 2 plus 
row 3 plus row 3—
more compactly, we 
will write R R2 3+2  — 
results in [1,0,2,2,1,0], 
shown in figure 4. 
(Try it yourself: what 
combination of rows 
makes the all-green 
coloring?)

3.  The rows of N3 are 
independent of one 
another in a strong 
sense. Not only are all 
the rows different, but 
no row can be written 
as a sum of other 
rows. You can prove 
this by considering the 
entries in the last three 
columns. 

We never need to use 
a row more than  
twice in a combination 
because we use arithmetic modulo 3. For  
that reason, solutions to the three-row  
puzzle can be represented in a meaningful 
way by ordered triples of numbers from �3 
—for example, we use (0,1,2) to represent  
the combination 0 1 21 2 3R R R+ +  and (2,2,1)  
to represent the combination 2 21 2 3R R R+ + .  
The all-red (all-zero) coloring corresponds 
to (0,0,0). With a computer, or even by hand, 
we could step through all of the 33 = 27 
triples, from (0,0,0) to (2,2,2), and produce 
the corresponding colorings by adding the 
appropriate rows of N3. 

In a linear algebra class, we’d say that the 
solutions to the three-row puzzle form a  
three-dimensional vector space over �3, and the 
three special properties of N3 amount to saying 
that the rows of this matrix form a basis for 
that space. The solution set may also be called 
the null space associated with the system of 
equations, and in fact, I used the NullSpace 
command in Mathematica to compute N3, 
although it’s straightforward to compute by 
hand. Almost any computer algebra system has 
a command for this job.

For a pyramid with n rows, applying 
NullSpace to the appropriate system of 
equations produces a matrix with n rows 
and one column for each cell in the pyramid. 
Each combination of rows added together will 
yield a valid coloring, and every valid coloring 

Figure 2. 
Variable 
assignment 
for three-row 
pyramid.

Figure 3. Row 1 of 
N3 as a three-row 
pyramid coloring.

Figure 4. R R2 3+ 2  
from N3 as a 
coloring.
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can be produced by adding together various 
combinations of the rows, from (0,0,…,0) to 
(2,2,…,2). Therefore, the pyramid with n rows 
will have 3n valid colorings; can you find a 
simpler, more direct proof of this fact?

How Many Clues, and Which Ones?
In the world of Sudoku, many CPU hours have 
been expended to find the minimum number 
of clues that determine a unique solution. 
For pyramid puzzles, the situation is simpler, 
and one linear algebraic consequence is the 
following.

Fact. It takes at least n clues to determine a 
unique solution for an n-row pyramid.

However, not every set of n clues will 
determine a unique solution for the pyramid 
with n rows. The clue set on the left in figure 5  
determines a unique solution, but the set on 
the right does not. Try it and see! The notion of 
independence allows us to algebraically detect 
the difference between the clue sets {1,5,8,10} 
and {1,5,7,10}. Using the NullSpace command 
on the four-row pyramid system of equations 
produces the matrix

N4

2 0 1 0 0 2 0 0 0 1
0 1 2 0 2 2 0 0 1 0
0 2 1 2 2 0 0 1 0 0
2 1 0 2 0 0 1 0 0 0

=

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜

⎞⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟

.

We construct two smaller matrices by picking 
out only those columns of N4 that correspond to 
the cells in the clue sets from figure 4: P1 uses 
columns 1, 5, 8, and 10 from N4, while P2 uses 
columns 1, 5, 7, and 10.

P P
1 2

2 0 0 1
0 2 0 0
0 2 1 0
2 0 0 0

2

=

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟

=and

00 0 1
0 2 0 0
0 2 0 0
2 0 1 0

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟

Remember, P1 corresponds to the “good” clue 
set that determines a unique solution, and 
you can see that its rows have that wonderful 
independence property: no row of P1 is equal 
to any other row, or even to any sum of 
other rows. On the other hand, P2 lacks the 
independence property, as rows 2 and 3 are 
identical. 

We won’t prove it here, but this process is 
exactly how to test whether a set of clue cells is 
a “good” set that determines a unique solution: 
select the columns from the NullSpace matrix 
that correspond to your clue cells, and delete 
the rest. If the shortened rows are independent 
of one another, the clue set is good, but if any 
row can be obtained from the sum of the other 
rows, then the clue set will allow more than one 
solution.

Unexpected Relations
You probably realize now that solving a 
puzzle can be reduced to solving a system of 
linear equations, which a computer can do in 
an eyeblink. This does not really reflect how 
humans solve these puzzles in practice. There 
are computer algorithms that are guaranteed 
to solve any Sudoku puzzle, but they are not 
practical or fun algorithms for humans. The 
same is true for tricolor pyramids, so let’s say a 
little about how to design puzzles so that they 
have more human interest to them.

If you examine any correctly colored pyramid 
with four rows, you will find that the three 
corners of the pyramid always form a trio: all 
three are the same, or all three are different, 
regardless of how the other cells may be colored. 
We can explain this algebraically by assigning 
variables to the cells, as shown in figure 6. 
Working from the bottom up (remembering 
that addition and multiplication are performed 
modulo 3, so that 1 + 2 = 0), we see 

x x x x x x x x x4 7 8 5 8 9 6 9 102 2 2 2 2 2= + = + = +, , and 

which forces

x x x x x x x x2 7 8 9 3 8 9 102 2= + + = + +and

so that, finally,

x x x1 7 102 2= + ,

or equivalently, x x x1 7 10 0+ + = . This means 
that knowledge of any two of the corners in a 
four-row pyramid allows the puzzler to deduce 
the last; the same reasoning applies to any four-
row subpyramid in a larger puzzle. In warm-up 

Figure 5. Some clues determine a unique 
solution, and some don’t.
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puzzles #3 and #4 from 
the cover, the “three 
corners” pattern can be 
used to deduce a cell with 
no guesswork. In puzzle 
#3, the rest of the puzzle 
unravels quickly; puzzle #4  
doesn’t yield quite so 
easily.

Figure 7 shows five 
cells that also satisfy  
a simple relation among 
themselves, regardless of 
the rest of the pyramid. 
You’ll have to deduce  
the relation yourself 
this time. You can also 
rotate figure 7 to find 
other sets of five cells 
satisfying identical 
relations. See if you can 
spot how to apply this 
pattern to solve the rest 
of puzzle #4 from the 
cover with no trial and 
error.

Figure 8 shows a further sampling of 
patterns that can be used to eliminate 
guesswork in puzzle solving. Any one of the 
shaded cells in a pattern can be deduced if you 
know the others. Keep your eye out for these 
shapes (and their reflected and rotated forms) 
as you solve. Or, if you like the challenge of 
designing puzzles, see how many patterns you 
can weave into the solution of your puzzle. 

Let’s consider one final problem. How can  
you adapt the linear algebraic techniques 
described in the previous sections to determine 
if a particular set of cells forms a pattern? 
You can bet it’s all about that independence 
property.

Final Remarks
The tricolor puzzle is a close relative of “Number 
Pyramid” puzzles commonly used in early grades 
to practice addition, subtraction, and algebraic 
thinking. I heartily recommend Jan Hendrick 
Müller’s article, “Exploring Number-Pyramids 
in the Secondary Schools” (The Teaching of 
Mathematics, VI(3), 2003, pp 37–48; available at 
http://www.teaching.math.rs/vol/tm613.pdf) for a 
thoughtful and creative look at the mathematics 
of these puzzles and how they can be used in the 
classroom.

In the tricolor puzzles, simple patterns like  
“three corners” and “five-T” emerge as a 
consequence of reducing the coefficients modulo 3.  
Consequently, the puzzles acquire a geometric, 
pattern-spotting element that is not present in 
ordinary number pyramids. Nonetheless, standard 
algorithms and theorems from linear algebra can 
still be used to solve puzzles, test clue sets for 
solvability, search for useful patterns, and design 
interesting puzzles around them. Linear algebra 
turns out to be pretty colorful! 

Jacob Siehler is an assistant professor of math 
at Gustavus Adolphus College. He would like 
to thank the students at Fairfield Elementary 
School, in Fairfield, VA, for their curiosity and 
questions about hexagonal pyramids, coin-
flipping puzzles, geometrical dissections, and 
other mathematical diversions.
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Figure 6. The 
“three corners” 
pattern.

Figure 7. The 
“five-T” pattern.

Figure 8. The “Y”, “S”, and “O” patterns.


