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Abstract: A connected graph on 2n vertices is defined to be xor-magic if the
vertices can be labeled with distinct n-bit binary numbers in such a way that
the label at each vertex is equal to the bitwise xor of the labels on the adjacent
vertices. We show that there is at least one 3-regular xor-magic graph on 2n

vertices for every n ! 2. We classify the 3-regular xor-magic graphs on 8 and
16 vertices, and give multiple examples of 3-regular xor-magic graphs on 32
vertices, including the well-known Dyck graph.
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A special labeling of the cube

The vertices of the cube can be labeled using all eight 3-bit binary numbers in
such a way that the bitwise xor of each vertex with its three neighbors is zero.
Figure shows such a labeling. The xor condition is satisfied at the back lower
right vertex because

111⊕ 011⊕ 010⊕ 110 = 000,

and you can see that the condition is satisfied at the remaining vertices as well.
Other such labelings can be obtained by symmetries of the cube. If you regard
a 3-bit binary number as a vector in 3

2, then the xor operation is just vector
addition, and so you can obtain further labelings of the cube by applying any
element of GL3 ( 2) to all of the labels. But how special is the graph of the
cube, that it admits any such labeling at all?
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Figure 1: Xor-magic cube.
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36 xor-magic graphs

Let us define a graph G to be xor-magic (of order n) if G is connected, has 2n

vertices, and the vertices of G can be labeled with the distinct n-bit binary
numbers in such a way that the bitwise xor of every vertex with its three
neighbors is zero. Equivalently, if we view an n-bit number as a vector in n

2 ,
the magic condition is that all 2n vectors are used, and the sum of every
vertex with its three neighbors is the zero vector.

Although the xor-magic definition makes sense for any graph on 2n vertices,
this note will focus on 3-regular graphs. This is partly because the xor-magic
property of the cube was discovered in the analysis of a tile-sliding game which
can only be played on 3-regular graphs [4]. It is also partly just because
regularity, with a low vertex degree, makes the graphs more appealing as
puzzles, when they are to be worked out by hand.

We will show that 3-regular, xor-magic graphs of every order exist (Theorem 1).
We also give necessary conditions for a graph to be xor-magic (Theorem 2), and,
with computer assistance, show that 3-regular, xor-magic graphs of small order
are rare. Finally, we offer an order 5 xor-magic graph without giving a labeling,
for the reader who would like to work it out as a puzzle.

An infinite family

The complete graph on four vertices is a 3-regular, xor-magic graph of order 2,
and the cube seen above is order 3. These can be seen as the first two in an
infinite family, constructed inductively in a manner reminiscent of the reflected
binary Gray code.

Theorem 1. There is a 3-regular, xor-magic graph of order n for every n ! 2.

Proof. We begin with a different drawing of the cube graph, shown in
Figure 2. The edges extending off the right end are meant to connect to the
corresponding edges on the left end, as if the graph were wrapped around a
cylinder.

110 011 101111

000 010 100001

Figure 2: Cube as “crossed prism”.

To make an order 4 graph,

1. Make two copies of the order 3 graph. In one copy, append a 0 at the
left of every label, and in the second copy, append a 1 at the left. This
generates all possible four-bit labels.

2. Glue the two copies together, side by side (Figure 3).
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Figure 3: Two copies of the cube, glued together.

The resulting graph is clearly three-regular. At every vertex, the three
rightmost bits satisfy the xor condition since they are copied directly from the
cube. Any vertex not involved in the gluing has the same leftmost bit as all its
neighbors, so the xor condition is satisfied for that bit as well. Any vertex
which is on the gluing boundary has one neighbor with the same leftmost bit,
and two neighbors with the opposite leftmost bit, so once again, the xor
condition is satisfied. We have constructed an order 4 xor-magic graph.

Now, two copies of the order 4 graph can be extended to 5 bits and placed side
by side to form an order 5 xor-magic graph, and so on.

Necessary conditions

The next theorem provides simple calculations that can be used to show that
many graphs are not xor-magic. Let G be a graph with vertices numbered 1
through 2n. Let M be the 2n × 2n matrix with

mij =

{
1, if i = j or if vertices i and j are adjacent in G

0, otherwise.

In other words, M is the adjacency matrix of G, together with 1’s on the main
diagonal. An element in the nullspace of M over 2 is an assignment of single
bits to the vertices of G in such a way that the xor condition is satisfied at
every vertex. Since vectors are added componentwise, an n-bit labeling of G is
equivalent to a choice of n vectors in the nullspace of M . The first vector gives
the first bit in each label; the second vector gives the second bit; and so on.

Let y1, y2, . . . , yk be any basis for the nullspace of M over 2 (so, k denotes the
nullity of M). Finally, let Y be the 2n × k matrix having the yi’s as columns.

Theorem 2. If G is xor-magic, then
(Test 1) k ! n, and
(Test 2) The rows of Y are all distinct.

Test 2 is particularly powerful because it applies to any basis for the nullspace.

Proof. Suppose that G is xor-magic. Let S be the 2n × n binary matrix in
which the i-th row contains the bits in the label of vertex i.

For Test 1: Certainly S contains n linearly independent rows (for example, the
rows containing a single 1). Thus, the rank of S is n, and the n column vectors of
S are linearly independent. But each of those column vectors is in the nullspace
of M , so the nullity k is at least n.
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38 xor-magic graphs

For Test 2: Let Y be a matrix whose columns are a basis for the nullspace of
M , as described above. Since each column of S is in the nullspace of M , it can
be expressed as a linear combination of the columns of Y . Hence, there is a
k × n matrix J with Y J = S. Since the rows of S are all distinct, the rows of
Y must all be distinct as well.

Note: If a graph passes Test 2, then the rows of the Y matrix provide a set of
k-bit labels which satisfy the xor condition and are all distinct. If k = n, then
the graph is xor-magic. However, if k > n, there may or may not be a set of
distinct n-bit labels which satisfy the xor condition.

3-regular graphs on 8 vertices

Figure 4: The five connected, 3-regular graphs on 8 vertices.

There are only five connected, 3-regular graphs on 8 vertices (sequence
A002851 in the OEIS [5]), and they are shown in Figure 4.

The nullities of the M matrices for the five graphs are, respectively: 4, 4, 2, 2,
and 1. Thus, all but the first two graphs fail Test 1, and cannot be xor-magic.

The second graph in Figure 4 has sufficient nullity to pass Test 1. This graph’s
M matrix (with respect to the vertex numbering shown at left) is

6 5

7 4

8 3

1 2

M =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 0 0 0 0 1 1
1 1 1 1 0 0 0 0
0 1 1 1 1 0 0 0
0 1 1 1 1 0 0 0
0 0 1 1 1 1 0 0
0 0 0 0 1 1 1 1
1 0 0 0 0 1 1 1
1 0 0 0 0 1 1 1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

from which a basis for the nullspace of M can be computed. One such basis is
given by the columns of the Y matrix here:

Y =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 0
0 0 1 0
1 1 0 1
0 0 0 1
1 1 1 0
0 0 1 0
0 1 0 0
1 0 0 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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Since this Y matrix has duplicate rows, the graph cannot be xor-magic. Thus,
the cube is the only 3-regular, xor-magic graph on 8 vertices.

3-regular graphs on 16 vertices

There are 4,060 connected, 3-regular graphs on 16 vertices (see [5], or [2] for
details of the calculation), and there are multiple sites on the internet where
one can download a data file containing all of them. One such site is House of
Graphs (https://hog.grinvin.org/Cubic), which is introduced in [1].

With the hard work of enumeration already done, it is easy to have a computer
algebra system do the necessary nullspace calculations to establish the following:

Theorem 3. There are only two connected 3-regular graphs on 16 vertices which
pass both tests from Theorem 2.

For example, in Mathematica, this can be done as follows, where the cub16.g6
file comes from https://hog.grinvin.org/Cubic :

yMatrix[g_] := NullSpace[
IdentityMatrix[Length[AdjacencyMatrix[g]]] + AdjacencyMatrix[g],
Modulus -> 2]//Transpose;

test[g_] := UnsameQ @@ yMatrix[g]
allGraphs = Import["cub16.g6"];
passingGraphs = Select[allGraphs, test];

One of them, of course, is the crossed prism constructed in Theorem 1. The
other, which we shall denote G1, is shown in Figure 5. The nullity of the M
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Figure 5: G1 passes both tests in Theorem 2.

matrix for G1 is 6, and computing a basis for the nullspace gives a Y matrix
with distinct rows. However, this only goes to demonstrate that the necessary
conditions of Theorem 2 are not sufficient:
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40 xor-magic graphs

Theorem 4. G1 is not xor-magic.

The crossed prism is thus the only 3-regular, xor-magic graph of order 4. Before
we begin the proof, let us note two generally useful transformations. Suppose
that a graph G has a set of n-bit labels which satisfy the xor-magic condition.

1. Applying any invertible linear transformation in GLn( 2) to all the labels
preserves the xor-magic property.

2. If every vertex in G has odd degree, then adding a constant n-bit vector
to every label of G preserves the xor-magic property.

Proof of Theorem 4. Throughout the proof, we will refer to the numbering of
the vertices shown in Figure 5. Suppose that G1 has an xor-magic labeling,
and let vi denote the 4-bit label on vertex number i. By adding v1 to every
label in the graph, we can assume that v1 = 0000.

If v1, v2, v3, and v4 are known, then v5 through v8 are determined by the xor
condition – in fact, they are linear combinations of v1 through v4. Since all
eight of these labels must be different, and we have normalized v1 to 0000, v2,
v3 and v4 must be linearly independent. By applying a linear transformation,
we can change those to any three linearly independent labels we like. After
this transformation, we may assume that the first eight vertices are labeled as
follows:

v1 = 0000 v2 = 0001 v3 = 0010 v4 = 0100

v5 = 0011 v6 = 0101 v7 = 0110 v8 = 0111

Now, whatever v9 is, it begins with a 1, so it is linearly independent from the
labels at vertices 2, 3, and 4, and we can apply a linear transformation to
assume that v9 = 1000 (while preserving the labels on the first eight vertices).
It then follows that v10 = 1011.

At this point, the xor condition requires v11 ⊕ v12 = v5 ⊕ v10 = 1000. But this
is impossible since v11 and v12 must both have a 1 in the leftmost position.
As noted before Theorem 4, the M matrix for G1 has nullity 6, and since it
passes Test 2, its Y matrix provides a set of distinct 6-bit labels which satisfy
the xor condition. In fact, one can improve this to give G1 a set of distinct
5-bit labels which satisfy the xor condition (this is not too difficult, and is left
as an exercise for the interested reader). G1 is not magic, but it is very close. In
general, for a graph which passes both tests from Theorem 2, with k > n, the
author does not know a way to determine the minimum number of bits which
suffice to give the vertices distinct labels which satisfy the xor condition.

More than just crossed prisms

At this point, one might guess that the crossed prisms of each order are the
only 3-regular xor-magic graphs, but that is not so. An exhaustive search of
32-vertex graphs is not feasible. However, searching among the most symmetric
3-regular graphs is surprisingly fruitful. There are just ten connected, vertex-
transitive cubic graphs on 32 vertices (A032355 in [6]). Vertex-transitive means
that, for any two vertices u and v in the graph, there is a graph automorphism
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which carries u to v – an extra-strong regularity property. Among the ten
are four xor-magic graphs: the crossed prism, the Dyck graph, and two others.
Figures 6 and 7 show the show magic labelings of the Dyck graph and one of the
others. Figure 8 is the remaining graph, given without a labeling for readers who
might enjoy working out a solution for themselves, whether computer-assisted
or entirely by hand.

Final Remarks

The xor-magic condition introduced in this note may seem unrelated to the old
recreational mathematics standby of magic squares. However, Conway, Norton,
and Ryba [3] prove that when the numbers 0–15 are placed into a traditional
4× 4 magic square, the numbers in each row and each column xor to zero; they
call this the Nimm0 property. The present article is inspired by their exposition.
With regard to 3-regular, xor-magic graphs, it would be interesting to know if
other infinite families with simple constructions like the crossed prisms might
exist – perhaps some or all of the 32-vertex graphs in Figures 6–8 represent
the beginning of some such family. We have already acknowledged that the
focus on 3-regular graphs in this article is somewhat arbitrary, and many other
xor-magic constructions may be waiting to be found among other classes of
graphs.

Most interesting of all would be better theory to determine the minimum number
of bits required to give a graph a set of distinct labels which satisfies the xor
condition. An upper bound is given by Theorem 2, but the 5-bit labeling of G1

shows that it is not sharp. Finding good theorems or algorithms to lower this
bound should be challenging work for the future.
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Figure 6: The Dyck graph is xor-magic.
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Figure 7: Another vertex-transitive xor-magic graph.
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Figure 8: Order 5 xor-magic graph, without its labels.
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