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We are in the world of graph theory here, not circus acts, and we have something
interesting to enumerate; let’s have a look at what we’ll be counting. On the left of
Figure 1 is the wheel graph W4. It is shown alongside several, though far from all, of
its spanning unicycles.

Figure 1 Wheel graph W4 and a few of its spanning unicycles.

To define our terms: For n ≥ 3, the wheel graph Wn consists of n vertices connected
in a cycle (the rim), together with one additional vertex (the hub) which is connected
to all of them. The standard drawing of the wheel has the rim vertices equally spaced
around a circle with the hub at the center.

A spanning unicycle in a graph is a subset of the edges which leaves the vertices
connected and contains exactly one cycle. Think of it as using graph edges to build a
“ring road” through some or all of the vertices, and then choosing just enough addi-
tional edges to reach any remaining vertices off the ring. If you do this on a graph
with n vertices, you will find you always use exactly n edges. At this point, you might
like to pause and work out how many spanning unicycles can be found in W4 before
proceeding to the following theorem, our main result, which discloses the number of
unicycles in any wheel graph.

Theorem. The wheel graph Wn (on n + 1 vertices) contains n · F2n−1 spanning uni-
cycles, where F2n−1 denotes the (2n − 1)th Fibonacci number.

So, for example (and to make sure we agree about indices), the wheel graph W4 in
Figure 1 contains 4 · 13 = 52 spanning unicycles, because we set F1 = F2 = 1 and
Fn+2 = Fn+1 + Fn for n ≥ 0. In the following sections, we shall prove this little, spe-
cialized counting theorem about unicycles by applying a bigger, more general counting
theorem about trees.
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Kirchhoff and spanning trees

If we remove an edge from the cycle of a spanning unicycle, what remains is a con-
nected graph with no cycles; this is known as a spanning tree in the original graph.
Since the idea of a spanning tree is likely to be more familiar than a unicycle to most
readers, we could turn things around and say that a spanning unicycle is just what you
get when you add one more edge to a spanning tree (necessarily forming one cycle).

Kirchhoff’s matrix-tree theorem, which we will state in a moment, says that the
answer to the question, “How many spanning trees are in my graph?” is given by a
determinant. In order to state the theorem, we need to know that the Laplace matrix
of a graph is a square matrix L with one row and one column for each vertex of the
graph. The (i, j) entry is given by

lij =
{

degree of vertex i, if i = j

−n, if there are n edges between vertex i and vertex j ,

where the degree of a vertex is simply the number of edges touching that vertex. For
example, the Laplace matrix of our example W4 is (with the rows and columns ordered
according to the labeling of the vertices in Figure 1)

⎛

⎜⎜⎜⎝

4 −1 −1 −1 −1
−1 3 −1 0 −1
−1 −1 3 −1 0
−1 0 −1 3 −1
−1 −1 0 −1 3

⎞

⎟⎟⎟⎠
.

Remarkably, this simple matrix representation of the graph data reduces the enumera-
tion of spanning trees to a straightforward calculation.

Kirchhoff’s matrix-tree theorem. The number of spanning trees in a graph is equal
to the absolute value of the determinant of any minor obtained by deleting any one row
and column of the graph’s Laplace matrix.

Thus, according to the theorem, by deleting the first row and column from the matrix
above, we can compute that W4 contains

det

⎛

⎜⎝

3 −1 0 −1
−1 3 −1 0
0 −1 3 −1

−1 0 −1 3

⎞

⎟⎠ = 45 spanning trees.

Kirchhoff’s theorem is a gem, and if you haven’t encountered it before, I recommend
drawing a few small graphs with their spanning trees, and working out the appropriate
determinant to confirm your count. You can find an insightful proof of the theorem
in Matoušek’s book [9]. An article by Benjamin and Cameron [1] also presents it
along with other applications of determinants to enumeration. In what follows, it will
be useful to keep in mind that the theorem holds true even in graphs that may have
multiple edges between two vertices.

Although the problem of counting unicycles seems to be only “one edge away” from
the problem of counting spanning trees, there is no simple analog of the matrix-tree
theorem for unicycles. However, we shall be optimistic and examine the relationship
between the two counting problems.

Given a graph G with a specified cycle C, let us define a “collapsed” graph G/C
which replaces all of C with a single new vertex, c. The idea is conveyed in Figures 2
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and 3. The edges of G between vertices of C vanish in G/C. Any edge from a vertex
v outside C to a vertex in C becomes an edge from v to c in G/C. This may result in
multiple edges from v to c, as seen in Figure 2.

Figure 2 Collapsing different cycles in W5.

Suppose we have drawn a spanning unicycle on G with cycle C. Collapsing C
makes the cycle disappear, leaving a spanning tree in G/C. On the other hand, any
spanning tree in G/C can be turned into a spanning unicycle in G with cycle C just
by adding the edges of C. These two functions, from unicycles in G to trees in G/C
and back again, are inverses of one another, and so we have a bijection.

Lemma 1. The number of spanning unicycles in G with cycle C is equal to the number
of spanning trees in the collapsed graph G/C.

In principle, this gives a strategy for counting spanning unicycles in a graph G: For
each cycle C, use the matrix-tree theorem to count spanning trees in G/C, and add
up the results. In practice, this strategy is only as good as our ability to enumerate the
cycles in G and organize the sum. Fortunately, in wheel graphs, the cycles are simple
and the high amount of symmetry will make the summation easy.

Collapsing and counting

Consider a spanning unicycle on the (n + 1)-vertex wheel Wn, where n ≥ 3. Its cycle
must be either:

(a) the rim, or
(b) Some k (for 2 ≤ k ≤ n) consecutive vertices on the rim, together with the hub,

which we call a (hub+k)-cycle.

In case (a), there are simply n ways to complete the unicycle by choosing a spoke
to connect the hub to the rim.

In case (b), for any given k, there are n of these (hub+k)-cycles. Since they are all
related by rotational symmetries of Wn in its standard drawing, the collapsed graph
G/C does not depend (up to isomorphism) on which of them we call C and collapse.

Figure 3 shows the collapse of a (hub+2)-cycle in W6. The Laplace matrix of the
collapsed graph is

⎛

⎜⎜⎜⎝

× × × × ×
× 3 −1 0 0
× −1 3 −1 0
× 0 −1 3 −1
× 0 0 −1 3

⎞

⎟⎟⎟⎠
.
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Figure 3 Collapsing any (hub+2)-cycle in W6.

The ×’s represent entries corresponding to the new vertex c, which will be irrelevant
as we will discard that row and column to apply the matrix-tree theorem. Now, this
particular example nicely illustrates the general case: If we collapse a (hub+k)-cycle
in Wn, order the remaining vertices consecutively around the rim, and ignore the row
and column of the collapsed vertex, we get an (n − k) × (n − k) minor in the Laplace
matrix with 3’s on the main diagonal and −1’s above and below it. To apply the matrix-
tree theorem, we will need to evaluate the determinant of a matrix in this form.

Let Mk denote the k × k tridiagonal matrix with 3’s on the diagonal and −1’s on
the sub- and superdiagonal, where

M1 =
(
3
)
, M2 =

(
3 −1

−1 3

)
, M3 =

⎛

⎝
3 −1 0

−1 3 −1
0 −1 3

⎞

⎠ , and so on.

This is where the Fibonacci numbers enter. We see that det M1 = 3 = F4 and
det M2 = 8 = F6, and the pattern continues, as described in the following lemma.

Lemma 2. For all k ≥ 1, det Mk = F2k+2.

This result is a special case of more general results about determinants of tridiago-
nal matrices [2, 10]. A short paper by Fielder [4] on the subject of enumerating trees
also includes this particular case. Still, we can outline a short proof as follows: by
expanding the determinant of Mk along the first row, we see that

det Mk = 3 det Mk−1 − (−1) det

⎛

⎜⎜⎝

−1 −1 0 · · ·
0
... (Mk−2)
0

⎞

⎟⎟⎠

= 3 det Mk−1 − det Mk−2 for each k ≥ 3,

and the even-index Fibonacci numbers satisfy the same recurrence (this follows
quickly from the definition of the Fibonacci sequence). Since det M1 = F4 and
det M2 = F6 and the two sequences satisfy the same second-order recurrence rela-
tion, they agree for all k.

The following lemma is a routine mathematical induction exercise using the defin-
ing relation of the Fibonacci sequence.

Lemma 3. For all n ≥ 1,
n∑

j=1

F2j = F2n+1 − 1.

With that, we have all we need to establish our main result.
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Proof of the theorem. By Lemma 1 and the matrix-tree theorem, det Mn−k repre-
sents the number of spanning unicycles in Wn that contain a particular (hub+k)-cycle.
Adding the n rim-unicycles to all the (hub+k)-unicycles, we find the total number of
unicycles in Wn is

n +
n∑

k=2

n det Mn−k = n + n

n−2∑

j=0

det Mj = n + n

n−2∑

j=0

F2j+2

= n

⎛

⎝1 +
n−1∑

j=1

F2j

⎞

⎠ = n · F2n−1.

Lemma 2 replaces the determinant with a Fibonacci number in the second equality,
and Lemma 3 provides the evaluation of the sum in the final equality. !

Go further with unicycles

The sequence {n · F2n−1} which we have obtained here appears as A117202 in the On-
Line Encyclopedia of Integer Sequences [11], where a different combinatorial connec-
tion to wheel graphs is noted (without proof). It is curious that the same numbers also
count certain acyclic subgraphs of Wn.

The reader who wants practice applying the matrix-tree theorem may take it as an
exercise to find the number of spanning trees in Wn. The answer to this is also found
in the OEIS, as sequence A004146 [11] (you will find connections to many other
problems there as well). There are further examples of spanning tree calculations for
interesting graph families in the articles of Haghighi and Bibak [7] and Hilton [8].

Finally, it is worth mentioning that the number of spanning unicycles (or spanning
trees) in a graph can be obtained by an appropriate evaluation of the graph’s Tutte
polynomial. See Bollobás [3] for a good introduction. Bollobás mentions the applica-
tion to spanning trees; the application to unicycles is noted in [5] (in the comments
following Theorem 7).

Computing the entire Tutte polynomial and then evaluating it is overkill; you can
use the deletion and contraction operations which define it to write a simpler recursive
formula that is specialized to the unicycle-counting problem. However, dedicated soft-
ware exists for the purpose of computing Tutte polynomials [6], so that is one way to
explore the unicycle counting problem experimentally and make discoveries and con-
jectures. Explore an interesting graph family (for example, the prism graphs or Möbius
ladders), and you will likely find an interesting sequence counting the unicycles.
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Summary. The enumeration of spanning trees in a graph is simply accomplished by a determinant (and a great
theorem). But what happens when you add one more edge to a spanning tree? The resulting “unicycle” structures
in a graph are harder to count, but we explore the problem in the family of wheel graphs, where the enumeration
leads to a tidy answer and some old familiar friends.
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