
374 MATHEMATICS MAGAZINE

How Long Until a
Random Sequence Decreases?

JACOB A. S IEHLER
Washington & Lee University

Lexington, VA 24450
siehlerj@wlu.edu

Waiting for the fall Imagine observing a stream of random real numbers: If you saw
the sequence

0.0478, 0.1429, 0.1667, 0.2204, 0.8124, 0.8226, 0.3101 . . . ,

with the first decrease occurring in the seventh position, you might feel that this was
an unusually long time to wait for that first decrease—even if you’re not exactly sure
how long such a run “usually” lasts in a random sequence. The average position of the
first decrease in a stream of random numbers depends on precisely what you mean by
random; that is, it depends on the distribution of random numbers that you’re sampling.
Surprisingly, though, for continuous distributions, the question has a very specific (and
delightful) answer that is independent of how the random numbers are distributed.

We will uncover the answer in due time—in Proposition 2, to be precise. In the
meantime, exercise your intuition by making a guess in advance about how long, on
average, a monotone run like the one above will last in a sequence of random numbers.
If you’ve been around math much, you can probably make a shrewd guess based solely
on the fact that I described the answer as “delightful.” But we will start by discussing a
special case of the problem, when the random numbers are generated simply by rolling
dice.

The answers to these questions have been known to specialists for some time. In
fact, one can find the answer to the main question as an exercise in Knuth [5], and most
of the results here can be found, in a more general setting, in Guy Louchard’s thorough
analysis of monotone runs [6]. However, they do not seem to be well known generally,
despite their accessibility and interest for students with a basic undergraduate calculus
background.

The die-rolling game One of the fringe benefits of teaching a course on probability
and statistics is that it affords an excellent excuse to keep an assortment of toys on
my desk, especially all sorts of dice. This article had its beginning when I was rolling
an ordinary 6-sided die and got what I felt was an unusually long run before the first
decrease in the numbers occurred. It might have been something like this:

1, 3, 3, 3, 4, 6, 5

and I decided to make a game of it: I would award myself 7 points for that run, since
I got to roll seven times (including the final, decreasing roll that ended the game).
Naturally, I was wondering what a typical score in my new game might be. But I also
had my eye on the 4- and 20-sided dice lying nearby, and wondered if one of those
might give me a better chance to get a large score. (Exercise your intuition again: can
I expect to get a better score by choosing one of the other dice?)
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Mathematically, an n-sided die is modeled by a discrete random variable that is uni-
formly distributed over the set {1, 2, . . . , n}; by this we mean that all of the outcomes
in the set occur with the same probability, 1/n. But we’re not interested in single rolls
of the die; rather, we want to study nondecreasing runs from repeated rolls of the die,
and that motivates the following. Given any random variable X we define an associ-
ated random variable R(X), the run-length variable for X , as follows: We sample X
until the first decrease occurs, then let R(X) be the total number of samples we took,
including the final decrease that ends the experiment. Call X the underlying variable
of R(X).

The R(X) notation emphasizes the fact that the experiment depends on the under-
lying variable X , but we’ll suppress the argument and simply refer to R when the
underlying variable is clear from context. And we’ll call the run-length variable Rn

when X is an n-sided die roll.
Our goal now is to study the expected value of R, particularly when the underlying

variable is an n-sided die roll. Informally, the expected value of a random variable is
the long-term average of its outcomes; by definition, the expected value of R is

E[R] =
∑

r

r f (r),

where the summation is over all possible outcomes r that might occur, and f (r) de-
notes the probability of getting outcome r .

No matter what the underlying variable is, we always get an outcome of at least 2 for
R. On the other hand, there’s no upper bound on the potential length of a nondecreasing
run, so the possible outcomes of R are {2, 3, 4, . . . }, and we can rewrite the expected
value calculation with more explicit limits of summation:

E[R] =
∞∑

r=2

r f (r).

Next we find an explicit formula for f (r) in the case of an n-sided die roll. Take
n ≥ 2, and let an(r) denote the number of nondecreasing sequences of length r that
can be formed from the set {1, 2, . . . , n}. This is a problem of selection with repetition
allowed, and any combinatorics text will tell you that an(r) is given by a binomial
coefficient: an(r) =

(n+r−1
n−1

)
. In fact, we do not need to defer to a text for this: Imagine

making your nondecreasing selection by distributing r stones among boxes numbered
1 through n, all in a row. Place a stick between each adjacent pair of boxes; now, let the
boxes vanish (leaving their contents behind). What remains is a sequence of r stones
and (n − 1) sticks which uniquely codes for your selection, and the number of such
sequences is counted by the binomial coefficient we have given.

With this notation the probability that a sequence of length r is nondecreasing is
an(r)/nr . The probability that a random sequence of length r decreases for the first
time in the last position, then, is the probability that it increases for r − 1 steps, minus
the probability that it increases for r steps:

fn(r) = an(r − 1)

nr−1
− an(r)

nr
, (1)

which can simplified (just combine fractions and cancel factorials) to

fn(r) =
(

n + r − 2
r

)
· (r − 1)

nr
. (2)

With a formula for the mass function established, we can proceed to the expected
value problem.
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PROPOSITION 1. The expected value of Rn is given exactly by

E[Rn] =
(

n
n − 1

)n

Proof. With formula (2) in hand, we can write the summation for the expected value
as

∞∑

r=2

r ·
(

n + r − 2
r

)
· (r − 1)

nr
(∗)

and massage the form until the sum can be evaluated, as follows:

(∗) = n(n − 1)
∞∑

r=2

(
n + r − 2

r − 2

)(
1
n

)r

= n − 1
n

∞∑

r=0

(
n + r

r

)(
1
n

)r

= n − 1
n

(
1 − 1

n

)−(n+1)

,

the last line following from the binomial series expansion of
(
1 − 1

n

)−(n+1)
which

appears in the previous step. The series does converge, since we are assuming n ≥ 2,
and of course the resulting expression reduces to the form in the statement of the
proposition.

Let’s look back at a few questions we can now answer about the die-rolling game:

1. By formula (2), the probability that I would get a score of 7, using an ordinary
6-sided die as in the example, is just

f (7) =
(11

7

)
· 6

67
,

which is about 0.007—small enough that you might suspect my example is ficti-
tious. (With a little more work you can check that the probability that I would get a
score of 7 or more is just a tiny bit less than 1%, which is probably a more relevant
fact.)

2. By Proposition 1, the average score for a game with a 6-sided die would be (6/5)6,
or just barely under 3.

3. Since the formula (n/(n − 1))n is strictly decreasing in n (a popular exercise), I’d
have a higher score, on average, if I switched to a 4-sided die, and a lower score if
I used the 20-sided die. In fact, to maximize your score, your best bet for this game
would be to toss a coin with sides labelled 1 and 2. You’d expect an average score
of 4 in that case.

If you’re still thinking about the question posed in the introduction, you might stop
to consider this: What can you say about the expected value of R if X has a very large
number of equally likely outcomes?

A variation: strictly increasing die rolls If we change the rules of the die-rolling
game slightly to insist on strictly increasing numbers, we get slightly different results
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for the mass function and expected score. In the strictly increasing game, for example,
rolling

1, 3, 5, 5

would cause the game to end with a score of 4. We can briefly establish results anal-
ogous to those of the previous section for the strictly increasing game. The expected
value calculation may seem even simpler, as it uses the more familiar version of the
binomial theorem, where the exponent is a positive integer.

Given any random variable X , define another random variable Rs(X) as follows:
we sample X until we get a result which is not strictly greater than the previous result,
then let Rs(X) be the total number of samples we took. If X represents an n-sided die
roll, then the probability mass function for Rs(X) is given by

fs(r) =
(

n + 1
r

)
· (r − 1)

nr
. (3)

The details are left as an exercise; the derivation is very similar to the nondecreasing
case. And if X represents an n-sided die roll then the expected value of Rs(X) is given
by

E[Rs(X)] =
(

n + 1
n

)n

(4)

To verify this, notice that in this variant we have an upper bound on the possible
scores: If we use an n-sided die, then our score must come from the set {2, . . . , n + 1}.
That means that the expected value calculation involves only a finite sum:

E[Rs] =
n+1∑

r=2

r ·
(

n + 1
r

)
(r − 1)

nr

=
(

n + 1
n

) n−1∑

r=0

(
n − 1

r

)(
1
n

)r

=
(

n + 1
n

) (
1 + 1

n

)n−1

,

with the last line following by the binomial theorem. And this simplifies to
(

n+1
n

)n
as

claimed.

QUESTION. In the strictly increasing game, what sort of die (how many sides)
should you choose to maximize your expected score?

The continuous game Now, instead of rolling dice to generate our random numbers,
suppose we have a continuous (real) random variable X as our source of randomness.

The only assumption we will make is that X is described by a probability density
function—that is, there is a nonnegative function p(x) on R with the property that the
probability that X is between a and b is given by

P(a ≤ X ≤ b) =
∫ b

a
p(x) dx .

With a continuous random variable, there is zero probability of any sample dupli-
cating an earlier number in the sequence. Therefore, the probability that a randomly
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generated sequence of length r is nondecreasing is the same as the probability that
it is strictly increasing, 1/r ! in both cases. As in equation (1), we can compute the
probability of a monotone run of length as a difference of probabilities:

f (r) = 1
(r − 1)! − 1

r ! = (r − 1)

r ! (5)

PROPOSITION 2. Let R be the run-length variable for any continuous random vari-
able X. Then the expected value of R is exactly

E[R] = e,

the base of the natural logarithm.

Proof. This is just an easy corollary of the formula for the mass function; working
directly from the definition of expected value we have

E[R] =
∞∑

r=2

r f (r) =
∞∑

r=2

r(r − 1)

r ! =
∞∑

r=2

1
(r − 2)!

and this last expression is exactly the beloved series expansion

1
0! + 1

1! + 1
2! + 1

3! + · · · = e.

Based on the previous sections, we might have arrived at this result heuristically
as follows: a continuous distribution is, loosely speaking, like a distribution with in-
finitely many equally likely outcomes. Since the expected run length when there are n
equally likely outcomes is E[Rn] = (n/(n − 1))n, we could have guessed that

E[R] = lim
n→∞

(
n

n − 1

)n

and this is another famous limit expression for e. (We could just as well have used a
limit of formula (4) from the strictly increasing game.) There is a pleasant symmetry
in the way the strictly increasing and nondecreasing versions of the discrete game ap-
proach the continuous game, matched by the use of the binomial theorem with positive
and negative exponents. This can be seen in the mass functions as well as the expected
value result: taking the limit as n goes to infinity in equations (2) or (3) gives the mass
function for the continuous case.

The appearance of e in this problem is reminiscent of its appearance in the “Hat-
Check Problem” [2, 3], where 1/e occurs as the approximate probability that a random
permutation of an n-element set has no fixed points; the probabilities converge to e
as n gets large. In the hat-check problem, 1/e is an excellent approximation to the
true probability even for relatively small n. In our problem, the expected value for
Rn converges much more slowly to e; roughly, you have to use an n = 10k-sided die
for E[Rn] to match k decimal digits of e. The slow convergence of this sequence is
discussed in an interesting article by Knox and Brothers [4].

A combinatorial connection The discrete distribution described by equation (5) can
be viewed as a limiting case of either of the two families of distributions described by
equations (2) and (3). Neither the families nor the limiting distribution appear to be
familiar enough to have a widely-known name attached to them. For the statistically-
inclined and curious, further investigation of these distributions might begin with their
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variance and higher moments. In the case of the run-length distribution for continuous
variables, that would entail considering sums of the form

∞∑

r=2

r k(r − 1)

r ! (6)

for different exponents k. Starting with k = 1, this will yield a sequence beginning

e, 3e, 10e, 37e, 151e, 674e, . . . .

The sequence of coefficients (sequence A005493 in Sloane’s index [8]) has a combi-
natorial interpretation in its own right, but may be better recognized as first differences
in the sequence of Bell numbers,

{Bk} = 1, 2, 5, 15, 52, 203, 877, . . . ,

which count the number of ways to partition a k-element set. The connection can be
seen by splitting (6) as

∞∑

r=2

r k

(r − 1)! −
∞∑

r=2

r k−1

(r − 1)!

and recognizing these as Dobinski’s summations [1, 7] for Bk+1 and Bk (albeit with
their first terms deleted). This fact probably doesn’t afford us any winning insight into
dice games, but the emergence of the Bell numbers here, hand in hand with Euler’s e,
seems to mark this problem as perfectly poised on the boundary between continuous
and discrete mathematics, and a satisfying demonstration of the interplay between
them.
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Summary Increasing runs of numbers are a naturally attractive feature in any randomly-generated sequence.
Surprisingly, the average length of such runs is easy to compute and does not depend on the distribution of the
random numbers, at least in the case of continuous random variables. We prove this, along with similar results
for runs in sequences generated by rolling dice.
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