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with the peg solitaire “problem space” sets in, and one
abandons the game, abandons solving individual puzzles in
favor of proving theorems, or seeks a twist on the rules to
make the game new again. Opting for the latter, I propose a
variation that I call “Port-and-Sweep Solitaire” (PaSS). PaSS
is also played on a grid, and the First Rule of PaSS is that
each square may hold 0, 1, or 2 counters—no more, no less.
I usually play on my computer, but checkers on a checker-
board work just as well (and are pleasingly tactile). PaSS
permits two types of move:

1.  Sweep move: Add                       to four consecutive  
squares on the board, and

2.  Port move: Add                  to three consecutive squares  
on the board.

Both moves are subject to the First Rule, and as in OPS, 
they may be performed in all four directions. Lacking several
hundred years of tradition, PaSS does not yet boast a single
defining problem, but it does admit a wealth of varied and
interesting ones. Figure 1 is a small, but typical, puzzle: we’re
asked to reduce a given arrangement of sixteen counters on
a 5 ! 5 board to a single counter in the center. Up to
symmetry, there are just three opening moves possible: port
a 2 to the center, port a 2 to one of the corners, or sweep
three 1’s to the edge. 

Figure 2 shows a partial solution to this problem, using the
third option to start. See if you can carry it to completion.
This is a very forgiving problem; there are many ways to
complete the solution I’ve begun, and my opening isn’t too
special. Any two moves at the start can be carried to a suc-
cessful conclusion. But if you arrive at one of the positions in
Figure 3 on your third move, you will inevitably get stuck with
no legal moves and at least three counters on the board.

Figure 4 offers three more problems on the 5 ! 5 board,
which are somewhat less forgiving. In one case you can go

Figure 1. Left: A small puzzle in its initial state. 
Right: The desired final state.
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How does this happen? I just wanted a nice game
where I didn’t have to count higher than two, and I
ended up dealing with imaginary numbers. But let me

back up: I’ve been a little obsessed with a puzzle lately, and I
would like to explain what’s puzzling me and how the square
root of –1 can sneak in where you least expect it. The puzzle
in question is a relative of the classic peg solitaire game
pictured above, and before I introduce it properly, we can
have a quick brush-up on the traditional version. You could
write a whole book on the subject [1] but as you probably
know, the game is quite simple: it is played on a grid, where
each square may hold a peg (or a marble, or some other
marker). The only allowable move is to jump one peg over an
adjacent peg into an empty square, removing the jumped
peg from the board:

This can be done in any direction on the grid—up, down, left,
or right. An equivalent way of looking at the move is that it
consists of adding                  to the “peg count” of three
consecutive squares on the grid—subject to the rule that a
square can’t contain more than one peg, or a negative
number of pegs.

The best-known problem in ordinary peg solitaire (OPS) asks
the player to reduce an almost-full board of 33 squares to a
single peg in the center square (see photo), but of course
other problems are possible—easier problems to warm up
on, or fresh challenges for those who have solved the classic
configuration [8]. Eventually, though, a feeling of familiarity
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astray on the first move! Despite the modest length of the
problems and the small board size, I think you’ll find their
solutions satisfying. See Problem 250 in the Playground on
page 30.

Sorry, You Can’t Get There from Here
Trying to reduce the problem in Figure 5 to a single counter
will be less satisfying, however, and after a certain number of
failed attempts, you will begin to suspect that it can’t be
done. How can you prove that no solution exists, without
examining every possible sequence of moves? 

Figure 4. Three more games to try on a 5 ! 5 board.

An elegant way is to use an invariant—a function whose
value is determined by the state of the board and will not
vary when we change the board by legal moves. If such a
function can be found that takes one value on the pristine
state of the problem and a different value on the target state,
then no sequence of legal moves can ever connect the two.
PaSS has a natural affinity for mod 3 arithmetic, and we can
take advantage of that to define a valuable pair of invariants
for the game. These invariants will assign to each board a
value in a charming and petite arithmetic universe of just nine
elements; namely, the set

F9 = {0, 1, 2, i, 1 + i, 2 + i, 2i, 1 + 2i, 2 + 2i}.
F9 is a discrete, mod 3 analogue of the complex number
system. Elements have the form a + bi; we can refer to a as
the real part and b as the imaginary part. Addition uses the
simple rule (a + bi) + (c + di) = (a + c) + (b + d)i, reducing both
parts mod 3 to stay in the range {0, 1, 2}. To multiply, treat i
as a square root of –1, but in the mod 3 world, –1 is the same
as +2, so you can avoid minus signs by declaring i2 = 2. That
leads to the peculiar, but totally legitimate, multiplication
formula

(a + bi) + (c + di) = (ac + 2bd) + (ad + bc)i.
F9 is an abelian group under addition, and the nonzero
elements form an abelian group under multiplication—that is,
F9 is a field of nine elements. We don’t need much of the
multiplicative structure for the present purposes, but note
that i(2i) = 1, that is, i–1 = 2i.

Now, coordinatize your board in the usual Cartesian manner,
letting the lower left square be (0,0). Let S(a,b) denote the
number of counters on square (a,b), and define

where all arithmetic—sums, products, and powers—takes
place in F9, so each of the sums above, no matter how
lengthy, will reduce to one of the nine elements.

Suppose a position S" is derived from S by a sweep 
to the right, taking one counter from each of 
(a, b), (a + 1, b), (a + 2, b) and adding two to (a + 3, b). Then

since the sum in parentheses is zero in F9. Similar
calculations show that the value of π is unchanged by
sweeps in the other three directions. And if S" is derived from
S by porting a 2 from (a, b) to (a + 2, b), then
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Figure 2. A promising opening sequence of moves.

Figure 3. Dead-end configurations.

Figure 5. An impossible game.
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and likewise for ports in other directions. This shows that the
value of π remains unchanged under all legal moves in the
game, and it’s routine to check that ! has the same property.
Thus, the values of π and ! separate the possible positions
on a given board into 81 distinct classes, and no play
between positions in different classes is ever possible. A 
5 " 5 board with a single counter in the center has π = 1 and
! = 1.

What of the board in Figure 5? Its invariants are π = 2 + i and
! = 1 + 2i, so it can never be played to a 1 in the center. In
fact, it could never be played to a single 1 or single 2 on any
square, since no single term in the sums for π and ! can
contribute both a real and imaginary part.

I should admit that I did not have to overexert myself to
discover π and !, because I knew of an analogous pair of
invariants for ordinary peg solitaire, described by de Bruijn
[6], using mod 2 arithmetic and a field of four elements. PaSS
can therefore be seen as a plausible answer to the analogy
problem, “What game is to the field of nine elements as peg
solitaire is to the field of four elements?”

More Problems: Four in the Corners
Back to problems you can solve: Figure 6 offers a few
additional problems on a 6 " 6 board. Boards with even
sides have no center square, so as an attractive, symmetric
alternative, these are designed to play down to four 1’s, one
in each of the four corners.

How big is the “problem space” of potentially interesting
four-corners puzzles? Not very big, if we’re picky about what
we consider an interesting problem. I prefer problems with 
a lot of symmetry, and there are 39 = 19,683 six-by-six
boards that have 90-degree rotational symmetry (including
the four-corners configuration itself, and some dull things like
the all-zero board). Taking the π and ! invariants into account

Figure 6. Some four-corners games, where the winning 
configuration has a 1 in each corner.

reduces the possibilities by a factor of 34, so at most 
35 = 729 of these could plausibly be played to four corners.
Among those, a large number share the disappointing
property exhibited by Figure 7: one can easily reduce the red
cells to a single 1 in the upper left corner, using ports alone,
without affecting the rest of the board.

Due to symmetry, this can be repeated three more times,
verbatim, to solve the problem. Boring! A port-and-sweep
problem should require both ports and sweeps, I’m sure you
agree. Eliminating the boring problems leaves a list of 273
candidates to be investigated—some that can’t be solved,
some too small or too obvious to be interesting, some too
large to be fun, and just a few in the Goldilocks region:
tantalizing, but elusive. Of course, if we’re open to problems
with less symmetry, there will be many more possibilities, and
there are many tactics yet to be discovered which will aid in
their construction and solution.

As a parting shot, the 7 " 7 board in Figure 8 was generated
by a computer working backward from a single 1 in the
center and trying to obtain a symmetric configuration (in this
case, just a reflective symmetry). I did not have the computer
save its steps, so I know the problem can be solved, but I
don’t know how! I believe it’s large enough to vex attempts to
solve it by sheer computing power—but perhaps a reader will
discover a more ingenious, tactical approach. See Problem
250 in the Playground on page 30.

Mutatis Mutandis
Ordinary peg solitaire has been studied extensively, and while
Beasley’s book [1] is the most comprehensive single work,
other stimulating articles can be found. Anyone who is keen
to explore will find that most of the problems and techniques
that have been developed for OPS can be successfully,

Figure 8. Can you play this to a single 1 in the center?

Figure 7. A four-corners game where no sweeping is needed.
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ahem, ported over to PaSS—but there are surprises to be
found in the process. For example, “resource counts” can be
constructed which provide an additional tool for proving
certain PaSS problems unsolvable, but they are governed by
more restrictive inequalities than in OPS. PaSS seems to be
more complicated than OPS on a one-dimensional (1 ! n)
board. And an investigation of the “Solitaire Army” problem
([2], [4]) will show that PaSS counters have much more
forward mobility than their ordinary peg counterparts. That
problem might lead you to wonder, “What is to PaSS as the
Golden Ratio is to OPS?”—but I don’t believe any works of
art will be inspired by the answer.

Now, I’m going to have just one more try at the game in
Figure 8…
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