
Test	 2	 Topics	 for	 MCS-‐177	 (Fall,	 2013)	

Reminders:

1. If you need an alternative testing time or location, set that up with me as soon as
possible.

2. You may use a single 8 1/2 by 11 sheet of paper with hand-written notes for
reference. (Both sides of the sheet are Ok.)

3. The help sessions for the week before test 2 are scheduled as follows:

• Professor	 Yu’s	 regular	 office	 hours	 are	 MWF	 from	 1.30pm	 –	 2.30pm.	 	
• The	 tutors	 (Kevin	 Dexter	 and	 Nate	 Jenson)	 offers	 help	 sessions	 for	 test	 2	

on	 Wednesday	 (11/6)	 from	 7pm	 –	 9pm,	 Thursday	 (11/7)	 from	 7pm	 –	
9pm,	 and	 on	 Sunday	 (11/10)	 from	 6pm	 –	 9pm.	 	

• Professor	 Yu	 will	 hold	 two	 extra	 help	 sessions	 on	 Saturday	 (11/09)	 from	
6pm	 –	 9pm	 and	 on	 Sunday	 (11/10)	 from	 6pm	 –	 9pm.	 	

Topics:

• List operations like string operations: len, +, *, [], [:], in, and for

• Table 4.1 on page 122, Table 4.2 on page 125

• List modification: []=, append, sort, index, count, remove, split, join

• List comprehensions: [<expression> for <item> in <sequence>] and
[<expression> for <item> in <sequence> if <condition>]

• Dictionaries: {}, {key:value, ...}, [], []=, in, list, len and for

• Table 4.3 on page 137

• Opening and closing files in Python (table 5.1 on page 156)

• Using for loops to iterate through each line of the file (Listing 5.1 on page 158)

• Writing a file

• Table 5.4 on page 164

• String formatting

• Table 5.2 and Table 5.3 on page 162

• Looping subject to a condition: while

• Image processing: nested loops, pixels, and images

• Table 6.1 on page 186, Table 6.2 on page 187, Table 6.3 on page 188, Table 6.4 on
page 189, Figure 6.2 on page 191

Sample Questions:

1) In the following Python session, there are ten spots where an expression is
evaluated, but instead of the value being shown, an italic a through j is shown.
Indicate what each of these ten values would be.

>>> n=[10,20,30]
>>> m=[40,50,60]
>>> s=n+m
>>> t=n
>>> s[0]
 a

>>> n[0]=100
>>> max(s)
b

>>> t.append(1000)
>>> len(n)
c
	
	
	
>>> m[-1]
d

>>> t.sort()
>>> n

e

>>> m[1:2]
f

>>> t[0]
g

>>> 10 in n
h

>>> 10 in s
i

>>> [x+5 for x in m]
j

2) Consider the following two functions:

def divTwo(k):
 count=0
 while k>0:
 k=k-2
 count=count+1
 return count

def tens(n):
 count=0
 while n%10 == 0:
 n=n//10
 count=count+1
 return count

(a) What is the value of divTwo(2)?

(b) What is the value of divTwo(4)?

(c) What is the value of divTwo(3)?

(d) Are there any values of k for which divTwo does no subtractions? If so,

given an example.

(e) Are there any values of k for which divTwo will go into an infinite loop? If

so, given an example.

(f) What is the value of tens(170)?

3) What are the four values that are printed by the following program?

nums = [1,2,3]
others = [4,5,6]

def f(nums):
 nums.append(10)
 return nums

print(f(others))
print(nums)
print(others)

x = 5

def g(x):
 return h(x*10)

def h(y):
 return x+y

print(g(x+1))

4) Assume that there is a procedure called factorial that follows the contract
below.

factorial: integer -> integer

The procedure factorial takes a number n and returns the value of n!. For example,
factorial(3) returns 6 while factorial(0) returns 1. You are working on a
bigger program and you keep finding out that you use factorial many times. It
looks inefficient to you to have to recalculate the factorials after you have used it
before. So you decide to build a dictionary that contains the values of factorials.

(a) Define a global variable called factorialValues that is an empty dictionary.

(b) Write the contract and implementation of lookUpFactorial that takes a
number and returns the factorial of the given number. lookUpFactorial should
check if the factorial of the given number can be looked up in the dictionary first. If it
is not found in the dictionary, it should calculate the corresponding factorial value and
insert it into the dictionary so that next time you look up the factorial of the same
number, it does not have to calculate it again.

>>> lookUpFactorial(1000)

40238…… (this takes a while to compute)

>>> lookUpFactorial(1000)

40238…… (comes out immediately)

5) Write the contract and implementation of a function formatRainData that read
in the rainfall.txt file from textbook page 156, and then write to a new file
called rainfallfmt.txt. The new file should format each line so that the city is
right-justified in a field that is 25 characters wide, and the rainfall data should be left-
justified in a field that is 5 characters wide.

6) Use a while loop to implement the for loop for i in range(10). Next, use a
while loop to implement the for loop for i in range(10,-1,-1).

7) Jimmy wants to write an image filter for Instagram to impress his hipster friends.
Jimmy’s idea is to take a photo and increase the red intensities of each pixel (he calls
it “the red filter”).

(a) First, write the contract and implementation of a function doubleRed that
take in a pixel and double the red intensity of that pixel (recall that every color
is composed of various intensities of red, green, and blue – the RGB values).

(b) Next, write the contract and implementation of a function redFilter that
takes in an image object and double the red intensity of each pixel in that
image.

