>>> 2.0 + 2.5

4.5
>>> 2 + 2.5
4.5

>>> 4.5 - 2.0

2.5
>>> 4.5 - 2
2.5

>>> 3.0 **2
9.0

>>> 3 %% 2
9

>>> 3 *x 3.0

27.0

MCS-177

Introduction to
Computer Science !

- Spring 2014

Louis Yu

Mixing integers and floats

When mixing different types of numbers,
you can figure out what the result will be
converted to by applying the following

rules:

e If either argument is a floating-point

number, the other is converted to

floating point. Thus result is a floating

point

e Only if both arguments are plain
integers, then no conversion is needed

Operator Description

<

Yo

"

Addition - Adds values on either side of the
operator

Subtraction - Subtracts right hand operand
from left hand operand

Multiplication - Multiplies values on either
side of the operator

Division - Divides left hand operand by right
hand operand

Modulus - Divides left hand operand by right
hand operand and returns remainder

Exponent - Performs exponential (power)
calculation on operators

Floor Division - The division of operands
where the result is the quotient in which the
digits after the decimal point are removed.

Integer and Floating Point

* Integers are the whole numbers you learned in
math class. We’ve seen nothing but integer
operations so far (even though some times the
result might be floating point)

* Floating point numbers are Python’s
approximation of what you called real numbers
in math class.

* Approximation because floating point numbers
cannot have an infinite number of digits following
the decimal point

>>> 5/3
1.6666666666666667

>>> 4 // 2

2

>>> 5 // 2
2

>>> 15 // 2
a
>>> 5.0//2.0
2.0

>>> 4.0//2
2.0

>>> 15.0//2
7.0

>>> 4 / 2
2.0
>>> 5 / 2
2.5
>>> 15 / 2
7.5

>>> 4.0/2

2.0

>>> 5.0/2
2.5

>>> 15.0/2.0

7.5

Mixing integers and floats

e If either argument is a floating-point number, the other is
converted to floating point. Thus result is a floating point
If both arguments are plain integers, then no conversion is

needed
The expression is
evaluated first
(integer division),
then the result is
convert to float/int

Real number
division: the result

is a real number \

Integer division:

Floors the resu
to an integer

S

Operator Description

+*

%

Addition - Adds values on either side of the
operator

Subtraction - Subtracts right hand operand
from left hand operand

Multiplication - Multiplies values on either
side of the operator

Division - Divides left hand operand by right
hand operand

Modulus - Divides left hand operand by right
hand operand and returns remainder

Exponent - Performs exponential (power)
calculation on operators

Floor Division - The division of operands
where the result is the quotient in which the
digits after the decimal point are removed.

* You can also tell Python to explicitly convert a
number to either an integer or floating-point

Casting

by using the int() or float() function. The
bracket is used to surround the expression

you want to convert

e Caution: if you convert an expression. The

expression is evaluate
(from the evaluation)
>>> 5
5
>>> float(5)

5.0

d first, then the result
is convert to float/int
>>> 5.44444

5.44444
>>> int(5.4444)

5

Naming objects

* Very often we have an object that we would
like to remember, if we want to refer to that
object later.

* e.g:pi=3.14159

* In python we can name an object using an
“assignment statement”

t

variable

Assignment statement — this particular form of equal sign is

used to assign value to a variable
Variable name = python expression

7
Yes, there is another type of equal sign (which we

will introduce later)

>>> 4 // 2

>>>5 // 2

>>> 4.0//2

2.0

>>> 5.0//2.0 >>> int (5.0//2.0)

2.0

>>> 4 / 2

2.0
>>> 5 / 2
2.5

>>> 4.0/2

2.0
>>> 5.0/2

2.5

* We want to calculate the volume ot

float(2)
>>> float(4//2)
2.0
>>> float(5//2)
2.0

>>> int (4.0//2)
2

2 int(20)
>>> int (4/2)
g int(25)
>>> int(5/2)
2

>>> int(4.0/2)
2

>>> int(5.0/2)
2

Example:

a cylinder

volume = area of base * height

Let’s calculate a case that:

r=8.0
h=16

(radiu;p= 8.0

(heigh?:): 16
- =

-

Casting:

* int(), float()

e Caution: if you convert an
expression. The expression is
evaluated first, then the
result (from the evaluation)
is convert to int/float

Operator Description

Addition - Adds values on either side of the
operator

Subtraction - Subtracts right hand operand
from left hand operand

Multiplication - Multiplies values on either
side of the operator

/ Division - Divides left hand operand by right
hand operand

% Modulus - Divides left hand operand by right
° hand operand and returns remainder

Exponent - Performs exponential (power)
calculation on operators

Floor Division - The division of operands
" where the result is the quotient in which the
digits after the decimal point are removed.

volume = nrlh

Note: you can pretty much name
the variable ANYTHING (except a
few name reserved for other
purposes which we will mention
later). Remember, it’s just a name

Variable name = python expression

0800 *Python 3.3.2 Shell*

0800 *Python 3.3.2 Shell*

Python 3.3.2 (v3.3.2:d047928ae3£f6, May 13 2013, 13:52:24)

lfecc 4.2.1 (Apple Inc. build 5666) (dot 3)] on darwin

Type "copyright", "credits" or "license()" for more information.

>>> WARNING: The version of Tcl/Tk (8.5.7) in use may be unstable.
Visit http://www.python.org/download/mac/tcltk/ for current information.
>>> radius = 8.0

>>> height = 16

>>> pi = 3.1415926

>>> baseArea = pi * radius ** 2

>>> baseArea
201.0619264

>>> CylinderVolume = baseArea * height

>>> CylinderVolume 201.0619264 * 16
3216.9908224

volumes= nx’h
vdume=a$aoﬂmsé*hdgm

\ -ﬂrlll f’
>>> radius = 4.0 Mo
>>> CylinderVolume

- 3.1415926 * 8.0 **2
3216.9908224 P 7P

201.0619264

Python 3.3.2 (v3.3.2:d047928ae3£f6, May 13 2013, 13:52:24)

lfecc 4.2.1 (Apple Inc. build 5666) (dot 3)] on darwin

Type "copyright", "credits" or "license()" for more information.

>>> WARNING: The version of Tcl/Tk (8.5.7) in use may be unstable.
Visit http://www.python.org/download/mac/tcltk/ for current information.

>>> radius = 8.0

000 *Python 3.3.2 Shell*

>>> height = 16 Think Sticky Notes

>>> pi = 3.1415926 Namespace Object space

>>> baseArea = pi * radius ** 2 .

>>> baseArea P 3.1415926

201.0619264 ot 40

>>> CylinderVolume = radius — %
baseArea * height - 8.0

>>> CylinderVolume height..

3216:9908224 b N, — 16

Radius sticky note stick to another AN

value, but the rest unchanged baseArea 201.0619

>>> radius = 4.0 = \\\\\ \\\ 264.

>>> CylinderVolume o T

3216.9908224 ~ylnger——-3216.990
: Volume 8224

800 *Python 3.3.2 Shell*

Python 3.3.2 (v3.3.2:d4047928ae3f6, May 13 2013, 13:52:24)

lféee 4.2.1 (Apple Inc. build 5666) (dot 3)] on darwin

Type "copyright", "credits" or "license()" for more information.

>>> WARNING: The version of Tcl/Tk (8.5.7) in use may be unstable.
Visit http://www.python.org/download/mac/tcltk/ for current information.

>>> radius = 8.0 : ey » :

S>> height = 16 Multlple' sticky notes” can stick to the
>>> pi = 3.1415926 SaMe€ object Namespace Object space
>>> baseArea = pi * radius ** 2

>>> baseArea P 31415926
201.0619264 >
>>> CylinderVolume = radius |
baseArea * height = 8.0
>>> CylinderVolume height.,
3216.9908224 - T 16
. .

>>> x = 201.0619264 L

baseAr
>>> CylinderVolume = x * height | 521.0619
>>> CylinderVolume e
3216.9908224 Cylinder — 3216.990

Volume 8224 _

Python 3.3.2 (v3.3.2:d047928ae3f6, May 13 2013, 13:52:24)

lfeee 4.2.1 (Apple Inc. build 5666) (dot 3)] on darwin

Type "copyright", "credits" or "license()" for more information.

>>> WARNING: The version of Tcl/Tk (8.5.7) in use may be unstable.

Visit http://www.python.org/download/mac/tcltk/ for current information.
>>> a = 10 . .
>>> b = 20 Think Sticky Notes

:;> a Namespace Object space

>>> b a

20 , 10

. -

>>> a

>>> a b — 20

20
>>> b

I
o

20

Rules about naming things in python

* Name must start with either a letterora _

* Python is case sensitive
— baseArea, basearea, BaseArea are all different

* Some names are reserved by python for its own use.

and del from not while
as elif global or with
assert else if pass yield
break except import print
class exec in raise
continue finally is return
def for lambda try
13
Module

* Many of the additional parts of Python functionality
are found in modules — an optional part of Python
that implements an abstraction that is designed to
make programing easier.

* We illustrate this using the cTurtle module which
allows the user to create a turtle and control it on the
computer screen

Abstraction and Functions

* Abstraction is defined as a concept
or idea not associated with any
specific instance

e Think of it as a black box function

* |t’s a container for a sequence of
actions

* To use, you just call the function by

name
Name: square root function Output: the square
Input: a number of that number
PRl TN PN
/ \ ¢ \
Ere—— 5 1
(\ 9 — wtx > 30
_’/ _‘,

The cTurtle Module

* In general, the statement you need to use to load a
module is import

* When you import a module, an object is created
inside Python, That object has the type module and
has a name attached to it that matches the name
you used on the import line

>>> import cTurtle

>>> cTurtle

<module 'cTurtle' from '/Library/Frameworks/Python
. framework/Versions/3.3/1ib/python3.3/site-package
s/cTurtle.py'>

Module

* Every object in Python has 3 important
characteristics:

— A name cTurtle
— Atype module
— Avalue
* Some Python objects have special values called
attributes
— Think of it as “what is the current state of the
object”

* Some Python objects have methods/functions
— You tell the object to do a particular thing
* Goup
* Go down
* Calculate ___ for me v

How to Use a Function From a Module

* The general form is:

The module ¢ The function you (The parameter

you imported want to use from you provide for
the module the function. It
The dot operator l could be nothing)
For example

- If you tell the turtle to move,

Sometimes when you call a function,)
then you need to say how far it

the function needs some values from

you in order to do its job. The value(s) should move .
you put in is called a parameter/ - If you tell the turtle to turn right,

parameters

how many degrees it should turn

Turtle Methods

Parameter(s) Description -

Nain? None Creates and returns a new turtlé objecL'_
Tortle Distance —Moves the turtle forward ~ -
forwardd Distance Moves the turle backward

peckne Angle Turns the turtle clockwise

nee Angle Turns the turtle counterclockwise

et None Picks up the turtle’s tail

:zm None Puts down the turtle’s tail

olor Color name Changes the color of the turtle’s tail
C

fillcolor Color name Changes the color that the turtle will use to fill a polygon
1

Returns the current heading

heading None di
position ~ None Returns the current position
goto X,y Moves the turtle to position x, y

begin fill None Remembers the starting point for a filled polygon
end fill None Closes the polygon and fills it with the current fill color

dot None Leaves a dot at the current position

Table13 Summary of simple turtle methods
18

>>> cTurtle.Turtle()
<c'1‘u?l'e.'1‘urtle object at 0x10327a990>

a constructor to
construct a turtle

>>> gertrude = cTu;tle.Turtle()

8006 Python Turtle Graphics

N A new turtle you just
one specific turtle created, look!!! ©

>

Definition: constructor Let's name it gertrude 4%
- Recall that the Turtle function is
used to create a new turtle object

>>> gertrude
<cTurtle.Turtle object at 0x10174c510>

20

>>> import cTurtle .

>>> turtlel =cTurtle.Turtle()

>>> turtle2 =cTurtle.Turtle() &

>>> turtle3 =cTurtle.Turtle() "

>>> turtle4 =cTurtle.Turtle() =

>>> turtlel o
<cTurtle.Turtle object at 0x101010750>
>>> turtle2

<cTurtle.Turtle object at 0x1010107d40>
>>> turtle3

<cTurtle.Turtle object at 0x101010840>
>>> turtle4

<cTurtle.Turtle object at 0x101010950>

>>> gertrude.position()
(100.%p,0.00)

No parameter (don’t forget the
Returns a value bracket)

>>> gertrude.heading()
270.0

* What does gertrude.forward(100) returns?

It returns no value, it simply
moves the turtle around.

Important lesson learned: when calling a function, it is important to ask:
1) What values do we have to pass in for the function (what are the parameters)
2) What does the function return

You should ask that every time you call a function (practice asking yourself that
often). You will need to use this skill a little later

>>> gertrude.forward(100) 000 pyhon Ture Graphics

Calling a function Have to provide a 100 units
parameter (how far it
should move)

© O O Python Turtle Graphics

>>> éertrude.right(Qé)

//////’ T 90 degrees
R

Have to provide a

Calling a function parameter (how many
degrees it should turn
right)

22

Example — Let’s Run This

([NeNe) Python 3.3.2 Shell

Python 3.3.2 (v3.3.2:d047928ae3f6, May 13 2013, 13:52:24)
[GCC 4.2.1 (Apple Inc. build 5666) (dot 3)] on darwin

Type "copyright"”, "credits"” or "license()" for more inform
ation.

>>> WARNING: The version of Tcl/Tk (8.5.7) in use may be u
nstable.

Visit http://www.python.org/download/mac/tcltk/ for curren
t information.

>>> import cTurtle

>>> cTurtle

<module 'cTurtle' from '/Library/Frameworks/Python.framewo
rk/Versions/3.3/1ib/python3.3/site-packages/cTurtle.py’'>
>>> gertrude = cTurtle.Turtle()

>>> gertrude

<cTurtle.Turtle object at 0x10317c810>

>>> gertrude. forward (100) ¢ parameter

>>> gertrude.right (90) = parameter

>>> gertrude. forward (50) ¢ parameter

>>> gertrude.position() <« No parameter
(100.00,-50.00) ¢

>>> gertrude.heading() Return

270.0

>>>

-_— Turn 90 degrees

100 50

position: (100, -50)
heading: 360 —-90 =270
degrees

