
C H A P T E R S E V E N

Lists

7.1 The Definition of a List

In Chapter 6, we learned how to construct abstract data types where any element of
the type had the same number of components as any other. Sometimes, however,
the individual data will have varying sizes. One example is lists. In this chapter, we
first give a formal definition of lists. Then we show how this definition is used to
construct lists, and we explore common list-processing idioms.

Exactly what is a list? We could start thinking of some concrete examples of lists
by having everyone in our class make a list of the classes he or she attended yesterday.
Some people may have relatively long lists, and others may have been to just one
or two classes. Some people may have not have attended any classes at all. (If today
is Monday, perhaps everyone is in this situation.) Lists can be written in a variety of
ways as well. Some people might write lists in a column, others might use rows, and
still others may come up with more creative ways of doing it. No matter how the
lists are written, those lists that have at least one element have some inherent order
(i.e., each list can be written to start with the first class of the day and work its way
forward from there). Thus we could define a list as being a collection of 0 or more
elements, written in some particular order.

Now imagine that we need to write a computer program to deal with lists of some
sort of elements, say, integers for simplicity. Our first job is to decide what procedures
we need to define the abstract data type of integer lists. The definition we gave in
the foregoing is not much of a guide. Clearly, we are going to be implementing
compound data, because some of our lists may have quite a few components. But
how many components are we going to need? With the abstract data types that we
considered in Chapter 6, each individual piece of data had exactly the same number
of components as any other piece. Different lists, on the other hand, could have
wildly different sizes. So what do we do?

167

Out of print; full text available for free at http://www.gustavus.edu/+max/concrete-abstractions.html

Excerpted from Concrete Abstractions; copyright © 1999 by Max Hailperin, Barbara Kaiser, and Karl Knight

168 Chapter 7 Lists

Let’s think about this question a little more. In Chapter 6 we learned how to
construct abstract data types where all values belonging to a particular type had the
same number of components as each other. Now we want to have values of varying
sizes belong to a single type. This parallels what happened moving from Chapter 1
to Chapter 2. In Chapter 1 we wrote procedures where all processes generated by
a particular procedure were of the same size as each other. In Chapter 2 we asked
how to have a single procedure generate processes of varying size. There the answer
was recursion.

We also learned in Chapter 6 that the best way to define an abstract data type is
to first concentrate on how the type is used. We can illustrate how lists are used by
looking at the example of grocery lists. One of the authors usually constructs grocery
lists so that the items are ordered by their positions in the grocery store. The list is
then used by finding the first thing on it, putting that item into the cart, and crossing
it off the list. This gives us a new grocery list (with one less item) that is used to
continue the grocery shopping. Eventually, there is only one item left on the list
(the chocolate candy bar located just before the checkout counter). After putting this
item into the cart and crossing it off the list, the grocery list is empty. This means
that it is time to check out and pay for the groceries.

This grocery list example has a strong recursive flavor to it, and so we can use it
as a model for a recursive definition of lists. We will need a “base case” that defines
the smallest possible list, and we will need some way of defining larger lists in terms
of smaller lists. The base case is easy—there is a special list, called the empty list,
which has no elements in it. The general case is hinted at in the grocery list example
above: a nonempty list has two parts, one of which is an element (the first item in
the list), and the other is a list, namely, the list of all the other items in the whole
list. We can put this more succinctly:

The two-part list viewpoint: A list is either empty or it consists of two parts:
the first item in the list and the list of its remaining items.

The first element of a nonempty list is often called the head of the list, whereas the
list of remaining elements is called the tail. The two-part list viewpoint is one of the
things that distinguish a computer scientist from a normal person. Normal people
think lists can have any number of components (the items on the list), whereas
computer scientists think that all nonempty lists have two components (the head
and the tail). The tail isn’t one item that’s on the list; it’s a whole list of items itself.

How can we implement lists in Scheme? Given that most lists have two parts,
it would be natural to use pairs: Let the car of the pair be the first element of the
list, and let the cdr of the pair be the tail. However, because a list may be empty
and would therefore not have two parts, we need to account for empty lists as well.
Scheme does so by having a special type of value called the empty list, which we
explain in the next section, and a predicate null? that tests whether a given list is

7.2 Constructing Lists 169

empty. Using null? in conjunction with the pair operators cons, car, and cdr, we
can implement the list ADT in Scheme by adopting the following conventions:

(cons elt lst) Given an element elt and a list lst, cons returns the list whose
head is elt and whose tail is lst.

(car lst) If lst is a nonempty list, car returns its head.

(cdr lst) If lst is a nonempty list, cdr returns its tail.

(null? lst) Null? returns true if and only if lst is the empty list.

Of course, a better data-abstraction practice would be to define a separate set of
procedures, perhaps called make-list, head, tail, and empty-list?, that would
keep the separation between the list abstraction and the particular representation
using pairs. However, because this particular representation of lists is such a long-
established tradition, Scheme programmers normally just use the pair operations as
though they were also list operations. For example, the car and cdr selectors of
the pair data type are traditionally used as though they were also the head and tail
selectors of the list data type. You can always define head and tail and use them
in your programming, if you’d rather, but you’ll be in a small minority.

Note that these procedures do what is described above only when all parameters
that need to be lists have themselves been constructed using these conventions.
Furthermore, one common mistake to avoid is applying car or cdr to the empty
list.

A number of the procedures we will write are actually built into Scheme. We’re
going to write them anyway because they provide excellent examples of list processing
techniques. Furthermore, by writing them, you should gain a better understanding
of what the built-in procedures do.

7.2 Constructing Lists

How do we make lists in Scheme? Fundamentally, all nonempty lists are made by
using the pair-constructor cons. However, rather than using cons directly, we can
also use some other procedure that itself uses cons. For example, Scheme has a
built-in procedure, list, that you can use to build a list if you know exactly what
elements you want to be in your list. You pass the list elements into list as its
arguments:

(list 1 2 3)
(1 2 3)

Note that we let Scheme display the resulting list value by itself and that the
displayed value consisted of the elements of the list in order, separated by spaces and

170 Chapter 7 Lists

surrounded by a pair of parentheses. The fact that we allowed Scheme to display
the list is one exception to the general rule stated in the preceding chapter, where
we said that the way Scheme displays pairs is confusing, and therefore you should
write special purpose display procedures, such as display-game-state. In the case
where pairs are used to represent lists, the way Scheme displays them is simple and
natural, so there is no need to write something like display-list ourselves.

Another thing to note is that the stuff that gets printed out when a list is displayed
is not an expression that will evaluate to the list. Just as you can’t make a game state
by evaluating the output from display-game-state, namely, something like “Pile
1: 5 Pile 2: 8,” so too you can’t make a list by evaluating (1 2 3). If you were to
evaluate that, it would try to apply 1 as a procedure to 2 and 3, which fails because
1 isn’t a procedure. This particular list was displayed in a way that looked like an
erroneous Scheme expression. Other lists are displayed in ways that look like valid
Scheme expressions; for example, if the first element of the list were the symbol +
rather than the number 1, the list would display as (+ 2 3). Even evaluating this
expression won’t produce the list (+ 2 3). (From this past sentence onward, we will
take a shortcut and say things like “the list (+ 2 3)” when what we really mean is
“the list that, when displayed, looks like (+ 2 3).”)

Exercise 7.1

You also can’t get the list (+ 2 3) by evaluating (list + 2 3).

a. What do you get if you evaluate that expression? Explain why.
b. What expression can you evaluate that will produce the list (+ 2 3), which starts

with the symbol +?

We’ve seen that when you want the list (+ 2 3), you can’t just type in (+ 2 3).
For example, you couldn’t find the cdr of this list by evaluating (cdr (+ 2 3)),
because that would try to find the cdr of 5. One option would be to get some
procedure to build the list you want for you, instead of typing it in. For example,
you could use list. There is one other option, however, that lets you type in a list
as itself. You can use the same quoting mechanism that you use to type in symbols.
For example,

(cdr ’(1 2 3))
(2 3)

Lists and symbols both need quoting for the same reason: They look like expressions,
but we want the name itself or the list itself, not the result of evaluating the name
or list. Quote also gives us a way to get the empty list, namely, as the value of the
expression ’().

7.2 Constructing Lists 171

What if we want to construct a list that is too long to type? For example, suppose we
needed the list of integers from 1 to 2000. Rather than tediously typing in the whole
list, or typing in all 2000 arguments to the list procedure, we should automate
the process by writing a procedure to do it for us. As in the factorial example in the
second chapter, it makes sense to write a general purpose procedure that produces
the list of integers from low to high and then use it on 1 and 2000. To see how to
write such a procedure, let’s first construct some fairly short lists, using cons. We’ll
also draw a box and pointer diagram of each of these lists, using the technique from
Section 6.4, to illustrate the structure of lists:

(cons 1 ’())
(1)

1

()

(cons 1 (cons 2 ’()))
(1 2)

1 2

()

(cons 1 (cons 2 (cons 3 ’())))
(1 2 3)

1 2 3

()

Note that to get the list of integers from 1 to 3, we consed 1 to the list of integers
from 2 to 3, which shows us how to write the general procedure:

(define integers-from-to
(lambda (low high)
(if (> low high)

’()
(cons low

(integers-from-to (+ 1 low) high)))))

Such lists can then be created by making calls like the following one:

(integers-from-to 1 7)
(1 2 3 4 5 6 7)

This technique of using cons to recursively construct a list is often called consing
up a list.

Exercise 7.2

What do you get if you evaluate (integers-from-to 7 1)? Exactly which integers
will be included in the list that is the value of (integers-from-to low high)?
More precisely, describe exactly when a given integer k will be included in the list

172 Chapter 7 Lists

that is the value of (integers-from-to low high). (You can do so by describ-
ing how k, low, and high are related to each other.) Do you think the result of
integers-from-to needs to be more carefully specified (for example, in a com-
ment) than the implicit specification via the procedure’s name? Or do you think the
behavior of the procedure should be changed? Discuss.

Exercise 7.3

Write a procedure that will generate the list of even integers from a to b.

Exercise 7.4

We could rewrite integers-from-to so that it generates an iterative process. Con-
sider the following attempt at this:

(define integers-from-to ; faulty version
(lambda (low high)
(define iter
(lambda (low lst)
(if (> low high)

lst
(iter (+ 1 low)

(cons low lst)))))
(iter low ’())))

What happens when we evaluate (integers-from-to 2 7)? Why? Rewrite this
procedure so that it generates the correct list.

7.3 Basic List Processing Techniques

Suppose we need to write a procedure that counts the number of elements in a list.
We can use the recursive definition of lists to help us define exactly what we mean
by the number of elements in a list. Recall that a list is either empty or it has two
parts, a first element and the list of its remaining elements. When a list is empty,
the number of elements in it is zero. When it isn’t empty, the number of elements
is one more than the number of elements in its tail. We can write this in Scheme as

(define length
(lambda (lst)
(if (null? lst)

0
(+ 1 (length (cdr lst))))))

7.3 Basic List Processing Techniques 173

Similarly, to write a procedure that finds the sum of a list of integers, we would
do the following:

(define sum
(lambda (lst)
(if (null? lst)

0
(+ (car lst) (sum (cdr lst))))))

Notice how similar these procedures are to recursive procedures with integer
parameters, such as factorial. The base case in length and sum occurs when
the list is empty, just as the base case in factorial is when the integer is 0. In
factorial we reduced our integer by subtracting 1, and in length and sum, we
reduce our list by taking its cdr. Procedures that traverse a list by working on the cdr
in this manner are said to cdr down a list.

Exercise 7.5

Generalize sum to a higher-order procedure that can accumulate together the ele-
ments of a list in an arbitrary fashion by using a combining procedure (such as +)
specified by a procedural parameter. When the list is empty, sum returned 0, but this
result isn’t appropriate for other combining procedures. For example, if the com-
bining procedure is *, 1 would be the appropriate value for an empty list. (Why?)
Following are two possible approaches to this problem:

a. Write the higher-order procedure so that it only works for nonempty lists. That
way, the base case can be for one-element lists, in which case the one element
can be returned.

b. Write the higher-order procedure so that it takes an additional argument, beyond
the list and the combining procedure, that specifies the value to return for an
empty list.

Exercise 7.6

a. Write a procedure that will count the number of times a particular element occurs
in a given list.

b. Generalize this procedure to one that will count the number of elements in a
given list that satisfy a given predicate.

174 Chapter 7 Lists

Exercise 7.7

In addition to the procedure length, Scheme has a built-in procedure list-ref
that returns a specified element of a list. More precisely, a call of the form
(list-ref lst n) will return the (n 1 1)st element of lst, because by convention
n 5 0 returns the first element, n 5 1 returns the second, etc. Try this procedure
for various parameter values. Write this procedure yourself.

Exercise 7.8

Here are some more exercises in cdring down a list:

a. Write a predicate that will determine whether or not a particular element is in a
list.

b. Generalize this to a predicate that will determine whether any element of a list
satisfies a given predicate.

c. Write a procedure that will find and return the first element of a list that satisfies
a given predicate.

d. Write a procedure that will determine whether all elements of a list satisfy a given
predicate.

e. Write a procedure that will find the position of a particular element in a list. For
example,

(position 50 ’(10 20 30 40 50 3 2 1))
4

Notice that we are using the same convention for position as is used in list-ref,
namely, the first position is 0, etc. What should be returned if the element is not
in the list? What should be returned if the element appears more than once in
the list?

f. Write a procedure that will find the largest element in a nonempty list.
g. Write a procedure that will find the position of the largest element in a nonempty

list. Specify how you are breaking ties.

Exercise 7.9

This exercise involves cdring down two lists.

a. Write a procedure that gets two lists of integers of the same size and returns true
when each element in the first list is less than the corresponding element in the
second list. For example,

7.3 Basic List Processing Techniques 175

(list-< ’(1 2 3 4) ’(2 3 4 5))
#t

What should happen if the lists are not the same size?
b. Generalize this procedure to one called lists-compare?. This procedure should

get three arguments; the first is a predicate that takes two arguments (such as <)
and the other two are lists. It returns true if and only if the predicate always
returns true on corresponding elements of the lists. We could redefine list-< in
the following manner:

(define list-<
(lambda (l1 l2)
(lists-compare? < l1 l2)))

We frequently will use lists to build other lists, in which case we cdr down one list
while consing up the other. To illustrate what we mean, here is a simple procedure
that selects those elements of a given list that satisfy a given predicate:

(define filter
(lambda (ok? lst)
(cond ((null? lst)

’())
((ok? (car lst))
(cons (car lst) (filter ok? (cdr lst))))
(else
(filter ok? (cdr lst))))))

(filter odd? (integers-from-to 1 15))
(1 3 5 7 9 11 13 15)

At this point, we’ve seen enough isolated examples of list processing procedures.
Let’s embark on a larger-scale project that will naturally involve list-processing.
Consider the following remarkable fact: After doing a certain small number of
“perfect shuffles” on a 52 card deck, the deck always returns to its original order. (By
a perfect shuffle, we mean that the deck is divided into two equal parts, which are
then combined in a strictly alternating fashion starting with the first card in the first
half.) How many perfect shuffles are required to return a 52 card deck to its original
order?

We can represent our original deck as a list of the numbers 1 to 52 using the
procedure integers-from-to. How do we divide the deck into two equal halves?
We can write two general purpose procedures, one to get the first however many
elements of a list and the other to get the remaining elements.

176 Chapter 7 Lists

Let’s first write the procedure that will construct a list of the first n elements of a
given list. This procedure is very similar to the procedure list-ref in Exercise 7.7:

(define first-elements-of
(lambda (n list)
(if (= n 0)

’()
(cons (car list)

(first-elements-of (- n 1)
(cdr list))))))

Exercise 7.10

Write the procedure list-tail, that gets a list and an integer n and returns the
list of all but the first n elements in the original list. (List-tail is actually already
built into Scheme.)

For any given value of n in the range 0 # n # (length lst), the procedures
first-elements-of and list-tail can be used to split lst into two parts.

Once we’ve cut our deck into two halves, we still need to combine those halves
into the shuffled deck. We combine them by using the procedure interleave,
which takes two lists and combines them into a single list in an alternating manner:

(define interleave ; interleaves lst1 and lst2, starting with
(lambda (lst1 lst2) ; the first element of lst1 (if any)
(if (null? lst1)

lst2
(cons (car lst1)

(interleave lst2 (cdr lst1))))))

To see why interleave works correctly, focus on the comment, which says that the
first element in the result is going to be the first element from lst1 (i.e., the first
element of the first argument). What does the rest of the result look like, after that
first element? If you interleave a stack of red cards with a stack of black cards, so that
the top card is red, what does the rest of it look like? Well, the rest (under that top
red card) will start with a black card and then will alternate colors. It will include
all of the black cards and all the rest of the red cards. In other words, it is the result
of interleaving the black cards with the rest of the red cards. This explains why in
the recursive call to interleave, we pass in lst2 as the first argument (so that the
first element from lst2 winds up right after the first element of lst1 in the result)
and then the cdr of lst1.

7.3 Basic List Processing Techniques 177

Combining interleave, list-tail, and first-elements-of, we can now
define the procedure shuffle, which takes as arguments the deck as well as its size:

(define shuffle
(lambda (deck size)
(let ((half (quotient (+ size 1) 2)))
(interleave (first-elements-of half deck)

(list-tail deck half)))))

The purpose of the parameter size is efficiency—otherwise we would need to use the
procedure length. We write (quotient (+ size 1) 2) instead of the more natu-
ral (quotient size 2) in order to ensure that when size is odd, the first half of the
deck has the extra card. Notice that when size 5 52, (quotient (+ size 1) 2)
5 26.

In order to find out how many shuffles are needed, we write the following proce-
dure, which automates multiple shuffles:

(define multiple-shuffle
(lambda (deck size times)
(if (= times 0)

deck
(multiple-shuffle (shuffle deck size)

size (- times 1)))))

We can then find out how many shuffles are needed by making calls as follows:

(multiple-shuffle (integers-from-to 1 52) 52 1)
(1 27 2 28 3 29 4 30 5 31 6 32 7 33 8 34 9 35 10 36 11 37 12

38 13 39 14 40 15 41 16 42 17 43 18 44 19 45 20 46 21 47 22 48

23 49 24 50 25 51 26 52)

(multiple-shuffle (integers-from-to 1 52) 52 2)
(1 14 27 40 2 15 28 41 3 16 29 42 4 17 30 43 5 18 31 44 6 19

32 45 7 20 33 46 8 21 34 47 9 22 35 48 10 23 36 49 11 24 37 50

12 25 38 51 13 26 39 52)

...

(multiple-shuffle (integers-from-to 1 52) 52 8)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44

45 46 47 48 49 50 51 52)

Thus, eight perfect shuffles return the deck to its original order.

178 Chapter 7 Lists

Exercise 7.11

We have written shuffle so that it can operate on decks of any size. In fact, decks
of all sizes have the property that after a certain number of perfect shuffles, the
deck is returned to its original order. In this exercise you will write procedures that
will automate the process of finding the number of shuffles, which we call the
shuffle-number, required for a deck of a given size.

a. Given that you start with an ordered deck, the first thing you will need is a
predicate, called in-order?, that determines whether a list of integers is in
increasing order. Write this procedure.

b. Using in-order?, write a procedure shuffle-number that, when passed a pos-
itive integer n, returns the shuffle-number for n. You should start off with an
ordered deck of size n and repeatedly shuffle until the deck is in order.

Exercise 7.12

Throughout this section on perfect shuffles, we’ve been passing in the size of the
deck as well as the list representing the deck itself in order to avoid computing the
length of the list when we already knew it. Another approach would be to create a
new compound data type for decks, with two selectors: one to get the list of elements
and the other to get the length. That way we could pass in just a single thing,
the deck, but could still find the length without counting. Flesh out the remaining
details of this idea, implement it, and try it out.

We end this section with another example of using higher-order programming with
lists. Suppose you wanted to find the shuffle-number for decks of size 1, 2, 3, . . . , 100
so that you could look at them all and see if there seemed to be any pattern. Rather
than manually applying your shuffle-number procedure to each of the integers
from 1 to 100, you could get a list of those integers, using integers-from-to, and
then use some general purpose higher-order procedure to map each element of that
list into its shuffle-number. A procedure called map that is built into Scheme does
this mapping. Its first argument is the procedure to use for the mapping, and its
second argument is the list of values that should be mapped. So in order to get the
shuffle numbers for decks ranging in size from 1 to 100, we could do the following:

(map shuffle-number (integers-from-to 1 100))

Or, we could find the squares of 5, 12, and 13 by evaluating

(map (lambda (x) (* x x)) ’(5 12 13))
(25 144 169)

7.4 List Processing and Iteration 179

Exercise 7.13

The procedure map is extraordinarily handy for creating lists of all sorts. Each of the
following problems can be solved by using map.

a. Write a procedure that, when given a positive integer n, returns a list of the first
n perfect squares.

b. Write a procedure that, when given a positive integer n, returns a list of the first
n even integers.

c. Write a procedure called sevens that, when given a positive integer n, returns a
list of n sevens. For example:

(sevens 5)
(7 7 7 7 7)

d. Write a procedure that, when given a list of positive integers, returns a list of lists
of integers. Each of these lists should be the positive integers from 1 to whatever
was in the original list. For example,

(list-of-lists ’(1 5 3))
((1) (1 2 3 4 5) (1 2 3))

Exercise 7.14

Even though map is built into Scheme, it is a good exercise to write it yourself. Do so.

7.4 List Processing and Iteration

A palindrome is a word, such as madam, that stays unchanged when you write the
letters in reverse order. Sometimes, entire sentences are palindromes, if you ignore
spaces and punctuation; one of the classic examples is “Madam, I’m Adam.” In this
section, we’ll test lists of symbols to see whether they are palindromes when viewed
symbol by symbol rather than letter by letter. What we mean by this is that reversing
the order of the elements of the list leaves it unchanged. For example, the list (m a
d a m) is a palindrome and so is (record my record).

We can determine whether or not a list of symbols is a palindrome by reversing
it and seeing if the result is equal to the original list. We can do the equality testing
using equal? but need to figure out how to reverse the list. Actually, as so often,

180 Chapter 7 Lists

there is a procedure built into Scheme called reverse that does just what we need.
But in the best of no-pain/no-gain tradition, we’ll write it ourselves.

Reversing an empty list is quite easy. To reverse a nonempty list, one approach
is to first reverse the cdr of the list and then to stick the car onto the end of this
reversed cdr. The major obstacle is that we don’t have any procedure currently in our
toolbox for tacking an element onto the end of a list. What we want is a procedure
add-to-end such that (add-to-end ’(1 2 3) 4) would evaluate to the list (1
2 3 4). We can write this procedure in our usual recursive way, cdring down the
list and consing up the result:

(define add-to-end
(lambda (lst elt)
(if (null? lst) ; adding to an empty list

(cons elt ’()) ; makes a one-element list
(cons (car lst)

(add-to-end (cdr lst)
elt)))))

Given this, we can write reverse as follows:

(define reverse
(lambda (lst)
(if (null? lst)

’()
(add-to-end (reverse (cdr lst))

(car lst)))))

This way of reversing a list is very time consuming because of the call to
add-to-end. A good way to measure how much time it takes is to count up the
number of times cons is called. Adding to the end of a k-element list will make k11
calls to cons. Suppose we use R(n) to denote the number of conses that reverse
does (indirectly, by way of add-to-end) when reversing a list of size n. Then we
know that R(0) 5 0 because reverse simply returns the empty list when its argu-
ment is empty. When the argument to reverse is a nonempty list, the number of
calls to cons will be however many are done by reversing the cdr of the list plus
however many are done by adding to the end of this reversed cdr. Thus,

R(n) 5 R(n 2 1) 1 ((n 2 1) 1 1) 5 R(n 2 1) 1 n

But by the same argument

R(n 2 1) 5 R(n 2 2) 1 ((n 2 2) 1 1) 5 R(n 2 2) 1 (n 2 1)

7.4 List Processing and Iteration 181

so we get

R(n) 5 R(n 2 1) 1 n

5 R(n 2 2) 1 (n 2 1) 1 n

...

5 R(0) 1 1 1 2 1 3 1 ? ? ? 1 (n 2 2) 1 (n 2 1) 1 n

5 0 1 1 1 2 1 3 1 ? ? ? 1 (n 2 2) 1 (n 2 1) 1 n

5
n(n 1 1)

2

Therefore the number of conses done by this version of reverse is Q(n2). (The
last equation, expressing the sum as n(n 1 1)6 2, is from the solution to Exercise 4.1
on page 81. Even without it you could figure out that the sum was Q(n2) using
the reasoning given in Section 4.1.) We can expect the time taken to similarly be
Q(n2), which implies that as lists get longer, reversing them will slow down more
than proportionately quickly. A 200-element list is likely to take 4 times as long to
reverse as a 100-element list, rather than only twice as long.

There must be a better way of reversing a list. In fact, if you remember Exercise 7.4,
our initial attempt to write an iterative procedure that generates the list of integers
from a to b produced a list with the right numbers but in reverse order. Although
that was a mistake there, it suggests an iterative strategy for reversing a list.

Before trying to write an iterative reverse, a concrete example might be helpful.
Put a stack of cards on the table face up in front of you and reverse the order of
them, leaving them face up. Chances are you did it by taking the first card off of top
of the stack and setting it down elsewhere on the table, then moving the next card
from the top of the original stack to the top of the new stack, etc., until all the cards
had been moved. If you interrupt this process somewhere in the middle and turn
the rest of the job over to someone else, you might tell them to “reverse the rest of
these cards onto this other stack.”

In terms of our Scheme procedure, we can reduce the problem of reversing
(1 2 3 4) to the smaller problem of putting the elements of (2 3 4) in reverse
order onto the front of (1), which in turn reduces to putting the elements of (3 4)
in reverse order onto the front of (2 1), etc.:

(define reverse
(lambda (lst)
(define reverse-onto ; return a list of the elements of lst1
(lambda (lst1 lst2) ; in reverse order followed by the

; elements of lst2

182 Chapter 7 Lists

(if (null? lst1)
lst2
(reverse-onto (cdr lst1)

(cons (car lst1)
lst2)))))

(reverse-onto lst ’())))

The internally defined procedure reverse-onto does one cons for each element
in the list, as it moves it from the front of lst1 to the front of lst2. Notice that the
total number of conses is equal to the total number of cdrs; if we use n to denote
the size of the list lst, the number of conses is n. Thus we have reduced a Q(n2)
process to a Q(n) one.

Now we have all the procedures that we need to determine whether or not a list
is actually a palindrome:

(define palindrome?
(lambda (lst)
(equal? lst (reverse lst))))

(palindrome? ’(m a d a m i m a d a m))
#t

7.5 Tree Recursion and Lists

In this section, we will look at two examples of using tree recursion with lists. The
first example is a merge sort procedure roughly paralleling what you did by hand in
Chapter 4. The basic approach to merge sorting a list is to separate the list into two
smaller lists, merge sort each of them, and then merge the two sorted lists together.
We can only separate a list into two shorter lists if it has at least two elements,
but luckily all empty and one-element lists are already sorted. Thus our merge sort
procedure would look something like the following:

(define merge-sort
(lambda (lst)
(cond ((null? lst)

’())
((null? (cdr lst))
lst)
(else
(merge (merge-sort (one-part lst))

(merge-sort (the-other-part lst)))))))

7.5 Tree Recursion and Lists 183

We still have to do most of the programming, namely, writing merge and figuring
out some way to break the list into two parts, which for efficiency should be of equal
size or at least as close to equal size as possible.

We start with the procedure merge. Here we have two lists of numbers, where
each list is in order from the smallest to the largest. We want to produce a third
list, that consists of all of the elements of both of the original lists and that is still
in order. Notice that we have essentially two base cases, which occur when either
one of the original lists is empty. In each case, the result that we want to return
is the other (possibly nonempty) list. We additionally have three recursive cases,
depending on how the first elements of the two lists compare to each other. We
always want to cons the smaller number onto the result of merging the cdr of the list
this number came from with the other list. What happens if both lists have the same
number as their first element? The answer depends on why we’re merging the two
lists. There are some applications where we want to keep only one of the duplicated
number, and some applications where we want to keep both duplicates. Here, we’ve
arbitrarily decided to keep only one of the duplicated element. This will result in a
merge-sort that eliminates duplicates as it sorts:

(define merge
(lambda (lst1 lst2)
(cond ((null? lst1) lst2)

((null? lst2) lst1)
((< (car lst1) (car lst2))
(cons (car lst1) (merge (cdr lst1) lst2)))
((= (car lst1) (car lst2))
(cons (car lst1) (merge (cdr lst1) (cdr lst2))))
(else
(cons (car lst2) (merge lst1 (cdr lst2)))))))

What about breaking the list into two halves? One way of doing so would be to
use the procedures first-elements-of and list-tail as we did in the perfect
shuffle problem. The problem with this approach is that we would need to know
how long the list is that we’re trying to sort. True, we can use length to determine
this. But instead we’ll show off a different way of separating the list into parts, which
is roughly the opposite of interleaving. In other words, if we think of our list as a
deck of cards, we could separate it into halves by dealing the cards to two people.
One person would get the first, third, fifth, . . . cards, and the other would get the
second, fourth, sixth, . . . cards. We’ll call the resulting two hands of cards the odd
part and the even part.

To write the procedures odd-part and even-part, think about how you deal
a deck of cards to two people, let us say Alice and Bob. You start out facing Alice
and are going to give her the odd part and Bob the even part. In other words, you

184 Chapter 7 Lists

are going to give the odd-numbered cards to the person you are facing. You start by
dealing Alice the first card. Now you turn and face Bob, holding the rest of the cards
in your hand. At this moment, the situation is exactly as it was at the beginning,
except that you are facing Bob and have one fewer card. You are about to give Bob
the first, third, etc., of the remaining cards, and Alice the even-numbered ones. So,
all in all, Alice’s hand of cards (the odd part of the deck) consists of the first card
and then the even part of the remaining cards. Meanwhile, Bob’s hand of cards (the
even part of the deck) consists of the odd part of what’s left of the deck after dealing
out the first card. The odd-part and even-part procedures therefore provide an
interesting example of mutual recursion, because we can most easily define them in
terms of each other:

(define odd-part
(lambda (lst)
(if (null? lst)

’()
(cons (car lst) (even-part (cdr lst))))))

(define even-part
(lambda (lst)
(if (null? lst)

’()
(odd-part (cdr lst)))))

Now all we need to do to make merge-sort work is

(define one-part odd-part)
(define the-other-part even-part)

Our second example of using tree recursion comes from a family outing. One
day, we took our sons (aged 3 and 4) to the local video arcade to play a game
called Whacky Gator. Each child won several tickets that could be exchanged for
“prizes” at the main counter. Each kind of prize has a price attached. Some prizes
are worth ten tickets, some are worth nine tickets, and so on down to the plastic
bugs, which are only worth one ticket. The older child had won ten tickets and
wanted to know what prizes he could get. Obviously, he could get only one of the
ten ticket prizes. Alternatively, he could get one nine-ticket prize and one one-ticket
prize or one eight-ticket prize and two one-ticket prizes or one eight-ticket prize and
one two-ticket prize or As the child’s mother started enumerating the different
combinations that he could get, we whipped out our pocket Scheme systems and
discovered that there are 1778 possible combinations of prizes that the child had to
choose from, given the number of different prizes there were. (See Table 7.1.)

7.5 Tree Recursion and Lists 185

TABLE 7.1 The low-value prizes at our local video arcade

Value in tickets Number of distinct prizes

10 9
9 3
8 2
7 4
6 3
5 4
4 3
3 3
2 4
1 2

How did we do that? First, we decided to write a general procedure for figuring out
how many prize combinations there were. To see how we developed that procedure,
let’s consider a much smaller problem. Suppose that there are only two kinds of
one-ticket prizes, plastic spiders and plastic beetles. Then there are plastic worms
that are worth three tickets and little magnifying glasses that are worth five tickets. If
the child has five tickets, he can either get a magnifying glass or not. If he doesn’t
get a magnifying glass, he needs to get some combination of the rest of the prizes
that adds up to 5. If he does get the magnifying glass, he’s used up all his tickets
and there’s only one combination of additional prizes worth the remaining 0 tickets,
(i.e., the empty combination).

This approach gives us a way of reducing our problem to smaller problems.
Suppose the prizes are represented by a list of their values. In our small example
above, we would use the list (5 3 1 1) to represent the magnifying glasses, the
worms, the beetles, and the spiders. In this case, if a child has a certain amount of
tickets, she can get a combination of prizes that includes the first item in the list
or one that doesn’t include the first item. If she chooses the first item, we need to
count the number of combinations that she can get for the amount of tickets minus
the value of the first item. If she doesn’t choose the first item, we need to count how
many combinations of items she can get for the amount of tickets using only the rest
of the list. Thus, our recursive call would look like

(define count-combos
(lambda (prize-list amount)
.
.
.
(+ (count-combos prize-list (- amount (car prize-list)))

(count-combos (cdr prize-list) amount))))

186 Chapter 7 Lists

What are the base cases? To figure these out, note that our problem gets smaller in
one of two ways: either the prize list gets smaller or the amount of tickets decreases,
because all of the prizes have positive prices. Thus the process should halt when the
amount is 0, when it is less than 0, or when the prize list is null.

Exercise 7.15

What values should be returned in each of these cases? Using your answer, finish
writing the procedure count-combos.

To check to see if there really were 1778 possible combinations worth 10 tickets,
we need to enter a list of 37 numbers. Alternatively, we could write a procedure that
will generate that list for us, given the data. What is the best way to give the data?
One way would be to give it as a list of pairs, where the first number in each pair is
the value and the second number is the number of distinct prizes worth that value.
Another way would be to give the data by giving the value of the most expensive
prize and then giving the list of numbers of different prizes, with the first number
representing the number of different prizes for the most expensive prize, the second
number representing the number of distinct prizes worth one ticket less than the
most expensive prize, and so on.

Exercise 7.16

Which representation is best? Why? Can you think of any other, better way of
representing the data? Think about what the corresponding procedures would look
like as well as entering the data.

Exercise 7.17

Write the procedure that would generate the list needed for count-combos given
the data in Table 7.1. Check to see that there really are 1778 possible combinations
of prizes that are worth 10 tickets.

Exercise 7.18

One of our children has learned that he doesn’t need to spend all of his tickets
because he can save them up for his next trip. Thus, instead of finding the number
of combinations that he can get with one particular amount he would like to know
the number of combinations that he can get for any amount that is less than or equal
to the number of tickets he has. Write a procedure that is given a prize list and a

7.6 An Application: A Movie Query System 187

maximum amount and returns the number of combinations of prizes that you can
buy using no more than than the maximum amount of tickets.

Exercise 7.19

When our children started bringing home dozens of cheap plastic spiders, we asked
them to restrict themselves to getting only one of each kind of prize. Write a pro-
cedure that is given the prize list and amount and computes the number of prize
combinations that you can buy using exactly that amount and assuming that you
can’t get more than one of any particular prize.

Exercise 7.20

Write another procedure that will determine the number of combinations you can
buy using no more than a maximum amount of tickets while still insisting that you
can have at most one of each kind of prize.

Exercise 7.21

A similar problem to this is to imagine that you have an unlimited amount of quarters,
dimes, nickels, and pennies and that you need to come up with a combination of
these coins to make a certain amount. How many different ways can you do this?
Write a procedure that will count the number of ways to make change for a given
amount using only quarters, dimes, nickels, and pennies.

7.6 An Application: A Movie Query System

Have you ever gone to a video store to rent a movie, only to be confronted with
so many movies that you couldn’t find one you wanted to see? Perhaps you were
interested in seeing a movie by a given director, but you didn’t know which ones
they were, and the movies weren’t organized by director anyway. Or perhaps you
wanted to know which movies were directed by the person, whose name you forgot,
who directed some favorite movie? What if you didn’t know the name of the movie,
but you knew that it was made in the mid to late 1980s and Dennis Quaid starred
in it?

Being able to answer such questions would go a long ways toward finding a movie.
One possibility would be to ask the store personnel, but perhaps they are busy or
unfriendly or only like slasher movies. Another possibility would be to take some
movie expert, say Roger Ebert, along with you to the store, but that is probably
unrealistic. Wouldn’t it be nice if the video store provided a computer that had a

188 Chapter 7 Lists

program you could ask such questions? Perhaps it could even tell you which movies
were currently available at the store.

Let’s imagine how this program might be structured. First, it must have access
to the database of movies owned by the store. Second, it should have the ability to
search through the database in various ways. Finally, the user should be able to use
these search procedures flexibly and intuitively. Perhaps the user could carry on a
dialog with the computer that looks much like an ordinary English conversation.
Such a feature is called a natural language query system.

We will write a small version of such a program in this section. The database will
simply be a list of movie records. Next we will write procedures to search through
this list in various ways. Finally, we provide a query system for the program by using
pattern-matching on the user’s queries.

So let’s first create the database. For the individual movies, we need to define
a compound ADT with four components: the title of the movie, the name of its
director, the year the movie was made, and a list of the actors in it. For simplicity’s
sake, we assume that the year is a number and that names (of movies and of people)
are lists of symbols. We could construct movie records in a manner similar to how
we constructed three-pile game states in Chapter 6; alternatively, we could simply
put everything into a list. Because this alternative is easily done using the built-in
procedure list, we’ll represent movie records as lists:

(define make-movie
(lambda (title director year-made actors)
(list title director year-made actors)))

(define movie-title car)
(define movie-director cadr)
(define movie-year-made caddr)
(define movie-actors cadddr)

(These definitions take advantage of the fact that cadr, caddr, and cadddr are
built into Scheme as procedures for selecting the second, third, and fourth ele-
ment of a list. The names stand for “the car of the cdr,” etc.) We can then define
our-movie-database to be a list of such records as follows:

(define our-movie-database
(list (make-movie ’(amarcord)

’(federico fellini)
1974
’((magali noel) (bruno zanin)

(pupella maggio)
(armando drancia)))

7.6 An Application: A Movie Query System 189

(make-movie ’(the big easy)
’(jim mcbride)
1987
’((dennis quaid) (ellen barkin)

(ned beatty)
(lisa jane persky)
(john goodman)
(charles ludlam)))

(make-movie ’(the godfather)
’(francis ford coppola)
1972
’((marlon brando) (al pacino)

(james caan)
(robert duvall)
(diane keaton)))

(make-movie ’(boyz n the hood)
’(john singleton)
1991
’((cuba gooding jr.) (ice cube)

(larry fishburne)
(tyra ferrell)
(morris chestnut)))))

This example is of course a very small database. In the software on the web site for
this book, we include a more extensive database, also called our-movie-database,
that you can use for experimentation.

What types of database search procedures will we want to implement? We might
want to find all the movies by a given director or all of the movies that were made
in a given year or all the movies that have a particular actor in them.

Exercise 7.22

We can use the procedure filter defined in Section 7.3 to do any one of these
searches. For example, to find all the movies that were made in 1974, we would
evaluate

(filter (lambda (movie) (= (movie-year-made movie) 1974))
our-movie-database)

a. Write a procedure called movies-made-in-year that takes two parameters, the
list of movies and a year, and finds all the movies that were made in that year.

190 Chapter 7 Lists

b. Use the procedure filter to find all the movies that were directed by John
Singleton.

c. Write a procedure called movies-directed-by that takes two parameters, the
list of movies and the name of a director, and finds all of the movies that were
directed by that director.

d. Write a procedure called movies-with-actor that takes two parameters, a list
of the movies and the name of an actor, and finds all the movies that have that
actor in them. You could use the Scheme predicate member, which tests to see
whether its first argument is equal to any element of its second argument (which
must be a list).

Exercise 7.23

The biggest problem with the previous procedures is that they return a list of the
actual movie records, when we often would prefer just a list of the titles of the
movies. Write a procedure called titles-of-movies-satisfying that takes two
arguments, a list of movies and a predicate, and returns a list of the titles of the
movies satisfying the predicate argument. For example, evaluating the expression

(titles-of-movies-satisfying our-movie-database
(lambda (movie)
(= (movie-year-made movie)

1974)))

would give the list of titles of movies made in 1974. Hint: Use the procedure map
described in Section 7.3.

Exercise 7.24

Sometimes we want some attribute other than the title when we’re searching for the
movies that satisfy a given property. Generalize titles-of-movies-satisfying
to a procedure movies-satisfying that takes three arguments: a list of movie
records, a predicate, and a selector. Evaluating the expression

(movies-satisfying our-movie-database
(lambda (movie)
(= (movie-year-made movie) 1974))

movie-title)

should have the same result as the previous exercise.

7.6 An Application: A Movie Query System 191

Now that we have procedures to search through our database, we need to consider
the people who use the system. Typical video store patrons are not going to be
willing to deal with the kind of Scheme expressions that we’ve been evaluating to
find answers to their questions, and so we need to build a query system (i.e., an
interface that allows them to ask questions more easily).

The goal of the query system is to handle the user’s questions, causing the ap-
propriate database searching procedures to be called and the results reported to the
user. We will construct a query system that at least superficially simulates an English
dialog between the program and the user; such an interface is often called a natural
language interface. (Natural in this context refers to a naturally occurring human
language like English as opposed to a computer language such as Scheme; interface
refers to the fact that it is the point of contact between the user and the internals of
the program.) Thus, the task of this query system will be to read the user’s questions,
interpret them as requesting specific actions, and perform and report the results of
those actions.

Let’s be as concrete as possible. Suppose that we have a procedure called
query-loop that repeatedly reads and responds to the user’s questions. We would
like to have an interaction something like the following; the first line is a Scheme
expression, which is evaluated to start the loop, and the remaining lines are the
interaction with the loop:

(query-loop)

(who was the director of amarcord)
(federico fellini)

(who were the actors in the big easy)
((dennis quaid)

(ellen barkin)

(ned beatty)

(lisa jane persky)

(john goodman)

(charles ludlam))

(what movies were made in 1991)
((boyz n the hood) (dead again))

(what movies were made between 1985 and 1990)
((the big easy))

(what movies were made in 1921)
(i do not know)

(why is the sky blue)
(i do not understand)

192 Chapter 7 Lists

(so long)
(see you later)

Some observations are

The user’s questions are English sentences without punctuation and enclosed in
parenthesis; our program views them as lists of symbols.
The program displays the list of answers to the user’s query. If no answer is found,
it responds with (i do not know); if it can’t interpret the question, it responds
with (i do not understand).
The movie database we used for this sample interaction is slightly larger than the
one given above.

How can we program such an interaction? Remember the query loop repeatedly
reads a question, interprets that question as a request for some specific action, per-
forms that action, and reports the result. Not all questions can be interpreted. How-
ever, those that can be interpreted typically match one of a small set of patterns. For
example, the questions (who was the director of amarcord) and (who was
the director of the big easy) both have the form (who was the director
of ...). The key idea to programming the query loop is to use an abstract data
type called pattern/action pairs. Roughly speaking, a pattern specifies one possible
form that questions can have, whereas the corresponding action is the procedure for
answering questions of that form. The procedure query-loop will use a list of these
pattern/action pairs to respond to the user and will terminate if the user’s question
appears in a list of the ways of quitting the program. (This test for quitting is done in
the exit? procedure using the predefined procedure member, which tests whether
its first argument is equal to any element of its second argument. We introduced
member in Exercise 7.22d.)

(define query-loop
(lambda ()
(newline)
(newline)
(let ((query (read)))
(cond ((exit? query) (display ’(see you later)))

;; movie-p/a-list is the list of the
;; pattern/action pairs
(else (answer-by-pattern query movie-p/a-list)

(query-loop))))))

(define exit?
(lambda (query)
(member query ’((bye)

7.6 An Application: A Movie Query System 193

(quit)
(exit)
(so long)
(farewell)))))

All of the real work in query-loop gets done by the procedure answer-
by-pattern. How does this procedure work? The idea is that each of the questions
that the program can answer must match one of the patterns in the pattern/action list.
The action corresponding to the matching pattern is an actual Scheme procedure
that does what needs to be done in order to answer the given question. In order
to apply this action, we figure out what particular information must be substituted
into the blanks in the general pattern to make it match the specific question. These
substitutions are the arguments to the action procedure. Our answer-by-pattern
procedure will use two (as yet unwritten) procedures: matches?, which determines
if a question matches a given pattern, and substitutions-in-to-match, which
determines the necessary substitutions.

What should answer-by-pattern display? By looking at query-loop, we
know that the output should be a list that answers the user’s question. Thus,
if the question matched none of the patterns, the answer should be the list
(i do not understand). On the other hand, if the user’s question did match
one of the patterns, answer-by-pattern applies an action procedure that causes
our database to be searched. The value of this expression will be a list of answers. If
that list of answers is nonempty, we can simply display it; if it is empty, no answers
were found. In this case we should display the list (i do not know), indicating
that we could not find the movie or movies the user was looking for.

(define answer-by-pattern
(lambda (query p/a-list)
(cond ((null? p/a-list)

(display ’(i do not understand)))
((matches? (pattern (car p/a-list)) query)
(let ((subs (substitutions-in-to-match

(pattern (car p/a-list))
query)))

(let ((result (apply (action (car p/a-list))
subs)))

(if (null? result)
(display ’(i do not know))
(display result)))))

(else
(answer-by-pattern query

(cdr p/a-list))))))

194 Chapter 7 Lists

This procedure cdrs down the list of pattern/action pairs until it finds a pattern
matching the query. It then uses substitutions-in-to-match to get the substi-
tutions from the query and applies the appropriate action to those substitutions. We
are using the built-in Scheme procedure apply to apply the action procedure to its
arguments. To illustrate how apply works, consider the following interaction:

(apply + ’(1 4))
5

(apply * ’(2 3))
6

(apply (lambda (x) (* x x)) ’(3))
9

(apply movies-satisfying
(list our-movie-database

(lambda (movie) (= (movie-year-made movie) 1974))
movie-title))

((amarcord))

Notice that the first argument to apply is a procedure and the second argument is
the list of arguments to which the procedure is applied. Therefore, when we make
the following call in answer-by-pattern,

(apply (action (car p/a-list))
subs)

we are applying the action procedure in the first pattern/action pair to the list
consisting of the substitutions we got from the pattern match.

To get our query system working, we need to do three things. We need to construct
an ADT for pattern/action pairs, we need to start building the list of these pairs, and
we need to write the procedures matches? and substitutions-in-to-match. Do-
ing these things depends on understanding what patterns are. Consider the following
possible questions:

(who is the director of amarcord)
(who is the director of the big easy)
(who is the director of boyz n the hood)

The common pattern of these three questions is clear. If we use ellipsis points (. . .)
to represent the title, we can write this pattern as

(who is the director of ...)

7.6 An Application: A Movie Query System 195

The ellipsis points are sometimes called a wild card, because they can stand in for
any title.

What action should correspond to this pattern? As we said before, an action
is simply a procedure. After determining that (who is the director of the
big easy) matches this pattern, we will need to apply our action to the title
(the big easy), because we would substitute the title for the ... wild card to
make the question match the pattern. Thus, this particular action should be a
procedure that takes a title, finds the movie in our movie database that has this title,
and returns the director of that movie:

(lambda (title)
(movies-satisfying our-movie-database

(lambda (movie)
(equal? (movie-title movie) title))

movie-director))

Constructing the pattern/action ADT and building a list of pattern/action pairs is
straightforward. We define the pattern/action ADT much as we defined game states
in Chapter 6:

(define make-pattern/action
(lambda (pattern action)
(cons pattern action)))

(define pattern car)
(define action cdr)

We start building our list of pattern/action pairs by constructing a list with just one
pair:

(define movie-p/a-list
(list (make-pattern/action

’(who is the director of ...)
(lambda (title)
(movies-satisfying
our-movie-database
(lambda (movie) (equal? (movie-title movie) title))
movie-director)))))

We will be extending this list throughout the rest of the section.

196 Chapter 7 Lists

Exercise 7.25

Add a pattern of the form (who acted in ...) to your program by adding the
appropriate pattern/action pair to movie-p/a-list and reevaluating this definition.
What other patterns can you add?

To make answer-by-pattern work, we still need to write the procedures
matches? and substitutions-in-to-match. To begin with, suppose that all of
our patterns have the same form as (who is the director of ...) or (who
acted in ...). Therefore, a pattern would be a list of symbols; the last symbol
(and only the last) could be the ... wild card. For a pattern to match a question, all
non-wild card symbols in the pattern must be equal to the corresponding symbols in
the question. Beyond these equal symbols, if the pattern ends with the ... wild card,
there must be one or more additional symbols at the end of the question. Thus, to
write matches?, we need to cdr down both the pattern and the question, checking
that the cars are equal. We should stop if either of the two lists is empty, if the . . . wild
card is the car of the pattern list, or if the two cars are not equal:

(define matches?
(lambda (pattern question)
(cond ((null? pattern) (null? question))

((null? question) #f)
((equal? (car pattern) ’...) #t)
((equal? (car pattern) (car question))
(matches? (cdr pattern)

(cdr question)))
(else #f))))

The procedure substitutions-in-to-match will be very similar to matches?
in that it will get two arguments, a pattern and a question. However, substi-
tutions-in-to-match will be called only when these two lists match. It needs
to return a list of the substitutions for the wild cards in the pattern that will
make it match the question. Currently, we are assuming that there will only
be one substitution, which is the list of symbols that are matched by the ...
wild card. However, we will soon extend the definitions of both matches? and
substitutions-in-to-match so that patterns can contain more than one wild
card. Thus, your substitutions-in-to-match should return a one-element list,
where the one element is the list of symbols that matches the . . . wild card, as follows:

(substitutions-in-to-match ’(foo ...)
’(foo bar baz))

((bar baz))

7.6 An Application: A Movie Query System 197

Exercise 7.26

Write the procedure substitutions-in-to-match. Be sure to return a list con-
taining the list of symbols that are matched by the ... symbol. Note: You needn’t
use the whole query system to test whether substitutions-in-to-match works.
Instead, you could check whether you have interactions like the preceding one.
This note applies as well to later exercises that ask you to extend matches? and
substitutions-in-to-match.

Exercise 7.27

Test the whole query system by evaluating the expression (query-loop).

At this point, a typical question/answer might look like

(who is the director of amarcord)
((federico fellini))

Note that the answer is a list containing the director’s name, which is itself a list.
This is because movies-satisfying is finding the director of each of the movies
called amarcord, even though there’s only one. Asking for the actors in a particular
movie is even uglier; you get a list containing the list of the actors’ names, which
are themselves lists.

We can get better looking output by writing a procedure called the-only-
element-in and changing the action for finding the director of a movie to

(lambda (title)
(the-only-element-in
(movies-satisfying
our-movie-database
(lambda (movie) (equal? (movie-title movie) title))
movie-director)))

The procedure the-only-element-in has a single parameter, which should be
a list. If this list has only one element in it, the-only-element-in returns that
element.

Exercise 7.28

What should it return if there are no elements in the list? What if there are two or
more? Write this procedure, and use it to modify the action for finding the actors of
a particular movie.

198 Chapter 7 Lists

Now that our program can recognize very simple patterns, we can start adding
more complicated ones. The next pattern we add to our list is typified by the following
sentences:

(what movies were made in 1955)
(what movie was made in 1964)

What is the common pattern for these two queries? By using an extended pattern
language, we could write it as follows:

(what (movie movies) (was were) made in _)

We have extended our pattern language in two ways:

1. The symbol _ stands for a single-word wild card (as opposed to the multiword
wild card ...). Note that we can have as many _’s as we want; each one matches
a single word. Unlike with the ... wild card, the _ wild cards need not appear at
the end of the pattern.

2. List wild cards such as (movie movies) and (was were) in the pattern are
more restricted versions of the _ wild card. A wild card of either type must be
matched by a single word. However, the _ wild card can be matched by any word
at all, whereas a list wild card can be matched only by one of its elements. Thus,
the wild card (movie movies) can only match movie or movies.

Here’s how we can extend matches? to account for the second extension to our
pattern language. We use the Scheme predicate list?, which returns true if the
argument is a list, and also once again use member to test for list membership:

(define matches?
(lambda (pattern question)
(cond ((null? pattern) (null? question))

((null? question) #f)
((list? (car pattern))
(if (member (car question) (car pattern))

(matches? (cdr pattern)
(cdr question))

#f))
((equal? (car pattern) ’...) #t)
((equal? (car pattern) (car question))
(matches? (cdr pattern)

(cdr question)))
(else #f))))

7.6 An Application: A Movie Query System 199

Exercise 7.29

Extend matches? so that it also checks for the _ wild card. Remember that this is a
wild card for a single word. Also, remember that there can be more than one _ in a
single pattern and that they need not be at the end of the pattern.

Exercise 7.30

Extend substitutions-in-to-match to account for both of these extensions. It
should return the list of substitutions, one for each wild card.

Using these extended versions, we can redefine movie-p/a-list as follows:

(define movie-p/a-list
(list (make-pattern/action

’(who is the director of ...)
(lambda (title)
(the-only-element-in
(movies-satisfying
our-movie-database
(lambda (movie) (equal? (movie-title movie) title))
movie-director))))

(make-pattern/action
’(what (movie movies) (was were) made in _)
(lambda (noun verb year)
(movies-satisfying
our-movie-database
(lambda (movie) (= (movie-year-made movie) year))
movie-title)))))

Note that the action for this new pattern totally ignores the first two substitutions.
The substitutions for the first two wild cards in (what (movie movies) (was
were) made in) are often called noise words because they are not used in the
corresponding action. Not all list wild cards are used for noise words, however.
Suppose that instead of the pattern (what (movie movies) (was were) made
in), we used (what (movie movies) (was were) made (in before after
since)). The corresponding action would still ignore those first two noise words,
but it would need to know the substitution for the third wild card in order to know
which comparison operator to use.

200 Chapter 7 Lists

Exercise 7.31

What would the action corresponding to (what (movie movies) (was were)
made (in before after since)) be? Remember, because the pattern con-
tains four wild cards, the action procedure should get four arguments. It ignores the
first two of these and uses the third and fourth to construct a predicate. Note that
the third argument is a symbol; you will need to use that symbol to decide which
comparison to do.

Exercise 7.32

Add a pattern/action for the pattern

(what (movie movies) (was were) made between _ and _)

Exercise 7.33

What if the user asks for the director of “Godfather,” which is listed in our database
as “The Godfather”? As it stands, the program will respond that it doesn’t know, even
though it really does have the movie in its database. The point is that the symbol
the rarely contributes significant information as to the movie’s title. Similarly the
symbols a and an add little significant information.

Write a predicate that compares two titles but ignores any articles in either title.
Where would you use this predicate in the interface?

Exercise 7.34

It would be nice if we could add patterns of the form

(when was the godfather made)
(when was amarcord made)

The pattern could be (when was ... made), but unfortunately, matches? and
substitutions-in-to-match require that the ... wild card occur at the end of
the pattern, because as written, the ... absorbs the remainder of the sentence.

Extend matches? and substitutions-in-to-match to allow for patterns hav-
ing only one occurrence of the ... wild card but where that occurrence need not
be at the end of the pattern. Hint: If the pattern starts with ... and is of length n,
and the sentence is of length m, and there can be no additional ... wild cards in
the rest of the pattern, then how many words must the ... match up with?

7.6 An Application: A Movie Query System 201

Using these extended versions, add a pattern/action for the pattern

(when was ... made)

Exercise 7.35

If you allow more than one ... in the same pattern, there can be more than one
set of substitutions that makes the pattern match a sentence. For example, if the
pattern is (do you have ... in ...), and the sentence is (do you have boyz
in the hood in the store), the pattern will match not only if you substitute
“boyz in the hood” for the first wild card and “the store” for the second but also
if you substitute “boyz” for the first wild card and “the hood in the store” for the
second wild card.

Redesign substitutions-in-to-match so it returns a list of all the possible
sets of substitutions that make the pattern match the sentence, rather than just one
set. Allow multiple instances of ... in the same pattern. You’ll need to make other
changes in the way the program uses substitutions-in-to-match. You can also
redesign the program to eliminate matches?, because a pattern matches if there are
one or more sets of substitutions that make it match.

Exercise 7.36

Add pattern/action pairs that allow the user to ask other questions of your own
choosing. Try to make the patterns as general as possible, for example, by allowing
singular and plural as well as past and present tenses. Also allow for the various ways
the user might pose the query.

Exercise 7.37

Earlier, we said that the query system reads the user’s questions as lists of symbols.
We were stretching the truth, as illustrated by the query:

(what movie was made in 1951)

The last element of that question is not a symbol; it’s the number 1951. This raises
an interesting point. Because it is a number, it can be compared to other numbers
using the = operator. However, consider what would happen if we had the question

(what movie was made in Barcelona)

In this case, the action procedure attempts to compare the symbol Barcelona with
the year each movie was made using the = operator, and because Barcelona isn’t a

202 Chapter 7 Lists

number, an error is signaled. The whole problem here is that the _ is too general; it
will match anything at all and not just a number. Change the pattern language (and
the query system) to allow wild cards that are predicates such as number?.

Exercise 7.38

The pattern (what (movie movies) (was were) made in) would match
questions such as (what movie were made in 1967). To enforce grammatical
correctness, we would need to change our pattern language so that it would allow
wild cards that provide a choice among alternative lists of words rather than simply
among single words. One example of this would be the pattern

(what ((movie was) (movies were)) made in _)

Make the appropriate changes in the query system to allow for patterns of this type.

Is There More to Intelligence Than the Appearance of Intelligence?

The natural language interface presented in this section is quite clearly unintelli-
gent. It has no real understanding of the sentences it accepts as input or produces
as output—it is just mechanically matching patterns and spitting out canned re-
sponses. Yet if you ignore little things like punctuation and capitalization (which
are easy, but uninteresting, to fix), the dialog between the system and the user
could easily be mistaken for one between two humans.

Of course, the illusion only holds up as long as the input sentences are well
suited to the patterns and actions that are available. However, as we add more
patterns, the range of coverage gets larger. What if we also added progressively
more and more sophisticated kinds of pattern-matching, and stored data about
more and more topics? Presumably it would get harder and harder to distinguish
the system from an intelligent being—yet it would still be every bit as much
a mechanical “symbol pusher” as the current system. What if this progression
were taken to such extremes that no one could tell the difference between the
system’s behavior and that of a human? Even if no one ever achieves this feat of
programming, the hypothetical question has already provoked much philosophical
debate.

Some people, including most mainstream computer scientists, apply the op-
erational stance to intelligence: If it acts intelligent, it is intelligent. The idea
that an intelligent entity could be (at least hypothetically) the endpoint in a

(Continued)

7.6 An Application: A Movie Query System 203

Is There More to Intelligence Than the Appearance of Intelligence?

progression of progressively fancier mechanistic symbol pushers isn’t bothersome
to these people. There is no inherent contradiction between “mechanistic” and
“intelligent” because one refers to how the behavior is produced, and the other
refers to the nature of the behavior. Perhaps no mechanistic symbol-pushing
system could ever produce behavior that matched that of humans—after all, not
all kinds of mechanisms can be used to produce all kinds of results. But, these
people argue, if such a system ever did produce behavior like that of humans,
we would have no choice but to accept it as intelligent—after all, what else
could “intelligent” mean other than “behaving intelligently”? This operational
stance regarding intelligence was subscribed to by Alan Turing, among others,
as described in the biographical sketch of him in Chapter 5, and is frequently
referred to as the Turing test definition of intelligence.

On the other hand, some people (of whom the most well known is the philoso-
pher John Searle) say that if every program in our progression is a mechanical
symbol pusher, every one of them is operating on tokens that to us may bring
real things like people and movies to mind, but to the program are completely
content-free groupings of letters. The only sense in which the sentences can be
said to be “about movies” is that we humans can successfully associate them with
movies. To the computer, there is nothing but the words themselves. This is every
bit as true for the hypothetical endpoint of our evolution, which is indistinguish-
able in its behavior from a human as it is for the crude version presented in this
section. Even flawless conversation “about movies” is only truly “about movies”
for us humans, this group of philosophers would argue—to the computer, even
the hypothetical flawless conversation is just a string of words. Because Searle
made this point using a story about being locked in a room following precise
rules for processing things that were to him just squiggles, but to certain outsiders
made sense as Chinese text, this argument against the Turing test definition of
intelligence is frequently called the Chinese room argument.

A related point, which has also been persuasively argued by Searle, is that we
humans can do things in our minds, such as liking a movie, whether or not we
choose to utter the string of words that conventionally expresses this state, whereas
there is no particular reason to assume that some mechanical system that utters
“I like Boyz N the Hood” really does like the movie or even is the kind of thing
that is capable of liking. When other people state their likes, we may or may not
trust them to have honestly done so, but at least we accept that they can have
likes because we have likes and the other people are similar to us. For a dissimilar
thing, such as a computer program, we don’t have any reason to believe there are
truly any likes inside the shell of statements about likes. We have no reason to

(Continued)

204 Chapter 7 Lists

Is there more to intelligence? (Continued)

suppose the program is the kind that could lie about its likes, any more than that
it could tell the truth, because there is nothing we can presume the existence of
that would form the standard against which a purported like would be judged. In
a fellow human, on the other hand, we presume that there are “real likes” and
other mental states inside because we feel them in ourselves.

In short, Turing prefers to define intelligence in terms of behavior we can
observe, whereas Searle would prefer to define it in terms of internal mental
states. Searle presumes that a mute, paralyzed human being has such states and
reserves judgment on flawlessly communicating computer programs.

Review Problems

Exercise 7.39

Prove using induction on n that the following procedure produces a list of length n.

(define sevens
(lambda (n)
(if (= n 0)

’()
(cons 7

(sevens (- n 1))))))

Exercise 7.40

Suppose that f1, f2, . . . , fn are all functions from real numbers to real numbers. The
functional sum of f1, f2, . . . , fn is the function that, when given a number x, returns
the value f1(x) 1 f2(x) 1 ? ? ? 1 fn(x). Write a procedure function-sum that takes a
list of functions and returns the functional sum of those functions. For example

(define square
(lambda (x) (* x x)))

(define cube
(lambda (x) (* x (* x x))))

((function-sum (list square cube)) 2)
12

Review Problems 205

Exercise 7.41

Write an iterative version of the following procedure:

(define square-sum
(lambda (lst)
(if (null? lst)

0
(+ (square (car lst))

(square-sum (cdr lst))))))

Exercise 7.42

Write a procedure called apply-all that, when given a list of functions and a
number, will produce the list of the values of the functions when applied to the
number. For example,

(apply-all (list sqrt square cube) 4)
(2 16 64)

Exercise 7.43

Prove by induction on n that the following procedure produces a list of 2n seventeens:

(define seventeens
(lambda (n)
(if (= n 0)

’()
(cons 17 (cons 17 (seventeens (- n 1)))))))

Exercise 7.44

Consider the following two procedures. The procedure last selects the last element
from a list, which must be nonempty. It uses length to find the length of the list.

(define last
(lambda (lst)
(if (= (length lst) 1)

(car lst)
(last (cdr lst)))))

206 Chapter 7 Lists

(define length
(lambda (lst)
(if (null? lst)

0
(+ 1 (length (cdr lst))))))

a. How many cdrs does (length lst) do when lst has n elements?
b. How many calls to length does (last lst) make when lst has n elements?
c. Express in Q notation the total number of cdrs done by (last lst), including

cdrs done by length, again assuming that lst has n elements.
d. Give an exact formula for the total number of cdrs done by (last lst), including

cdrs done by length, again assuming that lst has n elements.

Exercise 7.45

Lists are collections of data accessible by position. That is, we can ask for the first
element in a list, the second, . . . , the last. Sometimes, however, we’d prefer to have
a collection of data accessible by size. In other words, we’d like to be able to ask for
the largest element, the second largest, . . . , the smallest.

In this problem, we’ll simplify this goal by restricting ourselves to collections
containing exactly two real numbers. Thus the two selectors will select the smaller
and larger of the two numbers. Here are some examples of this data abstraction
in use; the constructor is called make-couple. Note that the order in which the
argument values are given to the constructor is irrelevant, because selection is based
on their relative size.

(define x (make-couple 2 7))
(define y (make-couple 5 3))
(define z (make-couple 4 4))

(smaller x) (larger x)
2 7

(smaller y) (larger y)
3 5

(smaller z) (larger z)
4 4

Write two versions of make-couple, smaller, and larger. One version should
have make-couple compare the two numbers, and the other version should leave
that to smaller and larger.

Review Problems 207

Exercise 7.46

Write a higher-order procedure make-list-scaler that takes a single number scale
and returns a procedure that, when applied to a list lst of numbers, will return the
list obtained by multiplying each element of lst by scale. Thus, you might have the
following interaction:

(define scale-by-5 (make-list-scaler 5))

(scale-by-5 ’(1 2 3 4))
(5 10 15 20)

Exercise 7.47

Write a procedure map-2 that takes a procedure and two lists as arguments and
returns the list obtained by mapping the procedure over the two lists, drawing the
two arguments from the two lists. For example, it would yield the following results:

(map-2 + ’(1 2 3) ’(2 0 -5))
(3 2 -2)

(map-2 * ’(1 2 3) ’(2 0 -5))
(2 0 -15)

Write this procedure map-2. You may assume that the lists have the same length.

Exercise 7.48

Given the following procedure:

(define sub1-each
(lambda (nums)
(define help
(lambda (nums results)
(if (null? nums)

(reverse results)
(help (cdr nums)

(cons (- (car nums) 1) results)))))
(help nums ’())))

Evaluate the expression (sub1-each ’(5 4 3)) using the substitution model of
evaluation. Assume reverse operates in a single “black-box” step, but otherwise

208 Chapter 7 Lists

show each step in the evolution of the process. What kind of process is generated by
this procedure?

Exercise 7.49

Given a predicate that tests a single item, such as positive?, we can construct an
“all are” version of it for testing a list; an example is a predicate that tests whether all
elements of a list are positive. Define a procedure all-are that does this; that is, it
should be possible to use it in ways like the following:

((all-are positive?) ’(1 2 3 4))
#t

((all-are even?) ’(2 4 5 6 8))
#f

Exercise 7.50

Consider the following procedure (together with two sample calls):

(define repeat
(lambda (num times)
(if (= times 0)

’()
(cons num (repeat num (- times 1))))))

(repeat 3 2)
(3 3)

(repeat 17 5)
(17 17 17 17 17)

a. Explain why repeat generates a recursive process.
b. Write an iterative version of repeat.

Exercise 7.51

If a list contains multiple copies of the same element in succession, the list can be
stored more compactly using run length encoding, in which the repeated element is
given just once, preceded by the number of times it is repeated. The expand proce-
dure given here is designed to decompress a run-length-encoded list; for example, it

Review Problems 209

could be used as follows to expand to full size some 1950s lyrics we got from Abelson
and Sussman’s text:

(expand ’(get a job sha 8 na get a job sha 8 na wah 8 yip sha
boom))

(get a job sha na na na na na na na na get a job sha na na na na

na na na na wah yip yip yip yip yip yip yip yip sha boom)

a. Given the following definition of the expand procedure, show the key steps in
evaluating (expand ’(3 ho merry-xmas)) using the substitution model.

b. Does this procedure generate an iterative or recursive process? Justify your answer.

(define expand
(lambda (lst)
(cond ((null? lst) lst)

((number? (car lst))
(cons (cadr lst)

(expand (if (= (car lst) 1)
(cddr lst)
(cons (- (car lst) 1)

(cdr lst))))))
(else
(cons (car lst)

(expand (cdr lst)))))))

Exercise 7.52

Suppose you have a two-argument procedure, such as + or *, and you want to apply
it elementwise to two lists. For example, the procedures list+ and list* would
apply + and *, respectively, to the corresponding elements of two lists as follows:

(list+ ’(1 2 3) ’(2 4 6))
(3 6 9)

(list* ’(1 2 3) ’(2 4 6))
(2 8 18)

Because the two procedures list+ and list* are so similar in form, it makes
sense to write the higher-order procedure “factory” make-list-combiner that gen-
erates the two procedures list+ and list* as follows:

210 Chapter 7 Lists

(define list+
(make-list-combiner +))

(define list*
(make-list-combiner *))

Write the procedure make-list-combiner. You may assume that the two list argu-
ments have the same length.

Chapter Inventory

Vocabulary

empty list
head
tail
cons up
cdr down
mutual recursion
database

natural language query system
natural language interface
wild card
noise word
Chinese room argument
mental state
run length encoding

Slogans

The two-part list viewpoint

Abstract Data Types

lists
movies

pattern/action pairs
couples

New Predefined Scheme Names

null?
list
length
list-ref
list-tail
map
reverse

cadr
caddr
cadddr
member
apply
list?
number?

Scheme Names Defined in This Chapter

integers-from-to
length
sum

position
list-<
lists-compare?

Notes 211

filter
first-elements-of
list-tail
interleave
shuffle
multiple-shuffle
in-order?
shuffle-number
sevens
list-of-lists
add-to-end
reverse
palindrome?
merge-sort
merge
odd-part
even-part
count-combos
make-movie
movie-title
movie-director
movie-year-made
movie-actors
our-movie-database
movies-made-in-year
movies-directed-by
movies-with-actor

titles-of-movies-satisfying
movies-satisfying
query-loop
exit?
answer-by-pattern
matches?
substitutions-in-to-match
make-pattern/action
pattern
action
movie-p/a-list
the-only-element-in
sevens
function-sum
square-sum
apply-all
last
make-couple
smaller
larger
make-list-scaler
map-2
sub1-each
all-are
repeat
expand
make-list-combiner

Sidebars

Is there more to intelligence than the
appearance of intelligence?

Notes

For more information about perfect shuffles, including their applications in magic
and computing, see Morris [38].

Turing’s operational definition of intelligence is given in [52], and Searle’s
Chinese-room argument, in [47]. Searle has more recently (and more persuasively)
made the case for mental states in his book The Rediscovery of the Mind [48].

