ABSTRACT

TIGHT CLOSURE, PLUS CLOSURE AND FROBENIUS CLOSURE IN CUBICAL CONES

by

Moira Ann McDermott

Chair: Melvin Hochster

Let R be a Noetherian ring of characteristic p. Given a test element c, we call R strongly bounded relative to c if there exists an R-linear map $R^{1/q} \to R^{1/pq}$ taking $c^{1/q}$ to $c^{1/pq}$ for some $q = p^e$. It is shown that if R is strongly bounded relative to a test element, then tight closure commutes with localization in R. It is also shown that if R is a one-dimensional F-finite domain then there exists a test element c such that R is strongly bounded relative to c.

Let $R = K[[x, y, z]]/(x^3 + y^3 + z^3)$, where K is a field of characteristic p and $p \equiv 2 \mod 3$. It is shown that for most irreducible m-primary \mathbb{Z}_3-graded ideals $I \subseteq R$, we have $I^F = I^*$, and hence $I^* = IR^+ \cap I$. It is also shown that $I^F = I^*$ for several classes of not necessarily irreducible \mathbb{Z}_3-graded ideals in R. It is shown that the question of whether $I^F = I^*$ in R can be reduced to the case of \mathbb{Z}_3-graded irreducible modules.