Basic Set Theory

- A set is a collection of objects considered as a whole. The main concept is that of *membership*. Given an object x and a set A, we should be able to answer whether x is a member of A or not.
- Similar terms: set, class, collection, family, space
- finite sets vs. infinite sets
- Some important number sets
 - $\mathbb{N} = \{0, 1, 2, 3, \ldots\}$
 - \mathbb{Z} = the set of all integers
 - $\mathbb{Q}=$ the set of all rational numbers
 - $\mathbb{R}=$ the set of all real numbers
 - \mathbb{C} = the set of all complex numbers
- Examples of sets written
 - by enumeration: $\{1, 2, 3\}$
 - by set former: $\{n \in \mathbb{Z} : |n| \le 3\}$
 - by formulaic set former: $\{n^2 : n \in \mathbb{N}\}\$
- The empty set \emptyset (sometimes written {}) has no member.
- Two sets are equal, written A = B, if they contain the same elements.
- Notation:

\in	is a member of	¢	is not a member of
\subseteq	is a subset of	\subset	is a proper subset of
Ø	is not a subset of	¢	is not a proper subset of
\supseteq	is a superset of	\supset	is a proper superset of
Ž	is not a superset of	$\not\supset$	is not a proper superset of

where

- $A \subseteq B$ means "for all x, if $x \in A$ then $x \in B$."
- $A \subset B$ means " $A \subseteq B$ and $A \neq B$."
- $A \supseteq B$ means " $B \subseteq A$."
- $A \supset B$ means " $B \subset A$."
- A = B if and only if $A \subseteq B$ and $B \subseteq A$.
- Set operations:

U	union
\cap	intersection
\setminus	set difference
-	

where

 $A \cup B$ means $\{x : x \in A \text{ or } x \in B\}.$

- $A \cap B$ means $\{x : x \in A \text{ and } x \in B\}.$
- $A \setminus B$ means $\{ x : x \in A \text{ and } x \notin B \}.$

 \overline{A} means $U \setminus A$ (where U is the "universal set").

- Sets A and B are *disjoint* if their intersection is empty, i.e., $A \cap B = \emptyset$.
- Venn-Euler Diagram can help one understand why some theorem is true, or even suggest a proof.
- Some rules governing set operations:

$A \cup B = B \cup A$	(commutativity of union)
$A \cap B = B \cap A$	(commutativity of intersection)
$(A \cup B) \cup C = A \cup (B \cup C)$	(associativity of union)
$(A \cap B) \cap C = A \cap (B \cap C)$	(associativity of intersection)
$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$	(distributivity)
$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$	(distributivity)
$\overline{\overline{A}} = A$	(double complement)
$\overline{A \cup B} = \overline{A} \cap \overline{B} \qquad \overline{A \cap B} = \overline{A} \cup \overline{B}$	(DeMorgan's laws)

• Definition of +: $|A| + |B| = |A \cup B|$ whenever $A \cap B = \emptyset$.

Theorem. $|A \cup B| = |A| + |B| - |A \cap B|$

Proof. . . .

- min, max, \sum , \prod , \bigcup , \bigcap : definition, notation
- work through an example of min, max combination of a real matrix
- $\min(A \cup B) = \min\{\min A, \min B\}$ $\min \bigcup_{i \in I} A_i = \min\{\min A_i : i \in I\}$ similarly for max
- $\min \emptyset = +\infty$ $\max \emptyset = -\infty$
- The power set $\mathcal{P}(A)$ (or 2^A) of A is the collection of all subsets of A. In other words, $\mathcal{P}(A) = \{S : S \subseteq A\}.$

Theorem. If A is a finite set, then $|\mathcal{P}(A)| = 2^{|A|}$.

Proof. ...
$$\Box$$

• Given a set of n objects, the number of ways to select k objects from them is written $\binom{n}{k}$, and is read n choose k.

Theorem. $\binom{n}{k} = \frac{n!}{k!(n-k)!}$. *Proof.* ... In particular, $\binom{n}{2} = \frac{n(n-1)}{2}$.

Theorem (Pigeonhole Principle, Version 1). If k + 1 pigeons fly into k holes, then at least 1 hole has at least 2 pigeons.

Proof. ...

Theorem (Pigeonhole Principle, Version 2). If nk + 1 pigeons fly into k holes, then at least 1 hole has at least n + 1 pigeons.

Proof. \ldots

Theorem (Pigeonhole Principle, CZ Version). If n pigeons fly into k holes, then at least 1 hole has at least $\lfloor n/k \rfloor$ pigeons.

Proof. ...

Theorem (Ramsey's Theorem). Let $P = \{S_1, S_2, \ldots, S_k\}$ be a partition of a set S into k subsets, and let n_1, n_2, \ldots, n_k be k positive integers such that $|S_i| \ge n_i$ for every integer i with $1 \le i \le k$. Then there exists a positive integer N such that every N-element subset of S contains at least n_i elements of S_i for some $i(1 \le i \le k)$.

In particular, the integer

$$N = 1 + \sum_{i=1}^{\kappa} (n_i - 1)$$

is the least integer with this property.

Proof. \ldots