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Relations, Functions, and Sequences

Relations

• An ordered pair can be constructed from any two mathematical objects. For ex-

ample, the ordered pair (2, 1) has 2 as its first component and 1 as its second

component. The ordered pair (0, 0) has 0 in both components. If · stands for the

multiplication operation then the ordered pair (N, ·) has the set of natural numbers

as its first component and multiplication as its second component.

• Two ordered pairs (a, b) and (c, d) are said to be equal, written (a, b) = (c, d), if

a = c and b = d.

• An ordered pair is different from an unordered pair. So (a, a) 6= {a, a}, (a, b) 6=

(b, a), but {a, b} = {b, a}.

• Given two sets A and B, we define its Cartesian product, written A × B, to be

A × B = {(a, b) : a ∈ A, b ∈ B}. For example, the plane we study in analytic

geometry is simply R × R (also written R
2).

• A relation R from A to B is some subset of A × B. If (a, b) ∈ R, we say that a is

related to b in R, and write aRb.

The empty set ∅ is the smallest relation from A to B.

The relation A × B is the biggest relation from A to B.

• A relation R from A to A is called a relation on A. Here are some examples.

The unit circle U centered at the origin is a relation on R since U is {(x, y) ∈ R
2 :

x2 + y2 = 1}, a subset of R
2.

The relations <, ≤, >, ≥, = and their negations are all relations on R.

‘is a brother (sister, parent, sibling, etc) of’ are relations on humans.
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• A relation R on A is said to be reflexive if aRa for all a ∈ A.

• A relation R on A is said to be symmetric if bRa whenever aRb.

• A relation R on A is said to be transitive if aRc whenever both aRb and bRc.

• (How to axiomatize equality.) A relation R on a set A is said to be an equivalence

relation if R is reflexive, symmetric, and transitive.

• Show that if we define “aRb if a2 − b2 is even”, then R is an equivalence relation

on Z.

• A partition of a set S is a nonempty collection of disjoint, nonempty subsets of S

whose union equals S. For example, if P = {S1, S2, . . . , Sk} is a partition of S into k

subsets, then we have that (i) Si 6= ∅ for any i, (ii)
⋃k

i=1
Si = S, and (iii) Si∩Sj = ∅

if i 6= j. In general, a partition may be infinite.

• Equivalence relation and partition are closely related concepts. Given an equiva-

lence relation, there is a unique partition associated with it, and vice versa.

• Let X be any set and let C be any collection of subsets of X, i.e., for every C, if

C ∈ C then C ⊆ X. We define
⋃

C to be
⋃
C = {y : y ∈ C for some C ∈ C}.

Let R be an equivalence relation on X. For each a ∈ X, define the equivalence

class of a under the relation R, written [a]R, to be the set of all elements of X that

a is related to, i.e., [a]R = {x ∈ X : aRx}.

Theorem. For any a, b ∈ X and any equivalence relation R on X, we have aRb if

and only if [a]R = [b]R.

Proof. Assume that a, b are any elements of X and R is any equivalence relation

on X.

Suppose aRb. We will prove that [a]R = [b]R. We’ll first show that [a]R ⊆ [b]R. So

let c be an arbitrary element in [a]R. By definition of [a]R, we have aRc. So by

symmetry of R, we see that cRa. By assumption, aRb. So by transitivity of R,

it follows that cRb. Again by symmetry of R, we see that bRc. So by defintion

of [b]R, we conclude that c ∈ [b]R. We have now shown that every elment in [a]R is

also a member of [b]R. In other words, [a]R ⊆ [b]R.



MCS-236: Handout #A3 3

That [b]R ⊆ [a]R can be proved in a similar way. Thus [a]R = [b]R.

Conversely, suppose that [a]R = [b]R. We will show that aRb. Since R is reflexive,

we know that bRb. So by definition of [b]R, we conclude that b ∈ [b]R. Since

[a]R = [b]R by assumption, we then have that b ∈ [a]R. So by defintion of [a]R, we

conclude that aRb.

Theorem. Let R be an equivalence relation on X. Define P to be P = {[x]R : x ∈

X}. The collection P is then a partition of X.

Proof. To prove that P is a partition of X, we have to show that

1. [x]R 6= ∅ for all x ∈ X,

2. for any a, b ∈ X, if [a]R ∩ [b]R 6= ∅ then [a]R = [b]R, and

3.
⋃

P = X.

We prove item 1 as follows. Let x be an arbitrary element of X. By the reflexivity

of R, we conclude xRx. This means that the equivalence class [x]R is not empty

since it contains at least an element, specifically element x.

We prove item 2 as follows. Suppose a, b are any elements of X such that [a]R∩[b]R 6=

∅. Let c ∈ ([a]R ∩ [b]R). Then c ∈ [a]R and c ∈ [b]R. Since c ∈ [a]R, we see that aRc

by definition of [a]R. Therefore, [a]R = [c]R by last theorem. Since c ∈ [b]R, we see

that bRc by definition of [b]R. Therefore, [b]R = [c]R by last theorem. (Therefore,

[c]R = [b]R as well since equality of sets is an equivalence relation.) Therefore,

[a]R = [c]R and [c]R = [b]R. So [a]R = [b]R by transitivity of set equality.

We prove item 3 as follows. Since each element of P is a subset of X, we conclude

that
⋃

P ⊆ X. Now let x be an arbitrary element of X. Then x ∈ [x]R ∈ P.

Therefore, x ∈
⋃
P. Thus, X ⊆

⋃
P. Hence,

⋃
P = X.

Theorem. Let C be any partition of X. Define R to be a relation on X by declaring

that for any a, b ∈ X, it holds that aRb if and only if there exists a C ∈ C such that

a ∈ C and b ∈ C. The relation R so defined is then an equivalence relation on X.

Proof. . . .
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• For any relation R from A to B, we define its inverse relation R−1 to be {(b, a) ⊆

B × A : (a, b) ∈ R}.

• A relation R on X is called antisymmetric if for all a, b ∈ X if aRb and bRa, then

a = b. A relation R on X is called asymmetric if for no a ∈ X is aRa. A relation R

on X is called a partial order if it is reflexive, transitive, and antisymmetric. A

partial order R on X is a total order (or linear order) if for all a, b ∈ X, either aRb

or bRa. Let R be a partial order on X. An element a in X is called a minimal

element if for any element b ∈ X, if bRa then b = a. Similarly, an element a in X is

called a maximal element if for any element b ∈ X, if aRb then b = a. An element

a in X is called a minimum element if aRb for all elements b ∈ X. An element a

in X is called a maximum element if bRa for all elements b ∈ X.

• Exercises:

1. Let S be a nonempty set, and let C be the collection of all subsets of S, i.e.,

C = {C : C ⊆ S}. Prove that ⊆ is a partial order on C.

Show that if |S| > 1, then ⊆ is not a a total order.

2. Let X = {2, 3, 4, 5, 6, 7, 8, 9, 10}. Define R to be a relation on X by declaring

that for all a, b ∈ X, we have aRb if and only if a is factor of b. For example,

2R8, 3R9, but it’s not true that 9R8. Prove that R is a partial order on X.

Show that R is not a total order.

3. Prove that ≤ is a total order on R.

4. For each of the partial orders listed above, list all elements that are minimal,

maximal, minimum, or maximum.
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Functions

• A function f from set A to set B, written f : A → B, is a relation from A to B

such that each a ∈ A is the first component of exactly one ordered pair. Set A is

called the domain and set B is called the codomain of f . If (a, b) ∈ f , we write

b = f(a) and call b the image of a under f .

The range of f is defined to be {b ∈ B : b = f(a) for some a}.

• A function f is injective (1-to-1) if f(a) = f(a′) =⇒ a = a′ for all a, a′.

A function is surjective (onto) if its range equals its codomain.

A function is bijective (1-to-1 and onto) if it is both injective and surjective.

• Theorem. A function f : A → A that is 1-1 (onto) is not necessarily onto (1-1)

unless A is finite.

Proof. . . .

• Given functions f : A → B and g : B → C we define the composite function g ◦ f

to be the function from A to C such that (g ◦ f)(a) = g(f(a)) for all a ∈ A.

• Theorem 2.4 (Appendix 2, CZ). If f : A → B and g : B → C are bijective, then

g ◦ f is bijective.

Proof. . . .

• Theorem 2.5 (Appendix 2, CZ). If f : A → B is a function, then f−1 is a bijective

function if and only if f is bijective.

Proof. . . .

• A permutation of A is any bijective f : A → A.

• |A| = |B| if there is a bijection f : A → B
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Sequences

• Let S be any nonempty set. A infinite sequence in S is a function from N to S. A

finite sequence in S is a function from {0, 1, 2, . . . , n} to S for some n ∈ N.

• We usually write a sequence by enumerating its range like so

〈a0, a1, a2, . . .〉

or like so

(s0, s1, s2, s3, s4, s5)

or even like so

v0, v1, v2, v3, v4.

• We sometimes start counting from 1 instead of 0. So it’s common to also see a

sequence written as

v1, v2, v3, v4, v5

etc.


