
MCS-236: Graph Theory Handout #Ch1

San Skulrattanakulchai

Gustavus Adolphus College Sep 27, 2010

Chapter 1. Introduction

Definition. Let

X : x = v0, v1, . . . , vk−1, vk = y

be an x − y walk and let

Y : y = vk, vk+1, . . . , vk+ℓ−1, vk+ℓ = z

be a y− z walk. We say that the walk Z = v0, . . . , vk, vk+1, . . . , vk+ℓ results from concate-

nating Y to X.

Let X be as above and let i and j be such that 0 ≤ i < j ≤ k. Then the vi − vj walk

X ′ : vi, vi+1, . . . , vj−1, vj is said to be a subwalk of X. Deleting the subwalk X ′ from X

means “removing all edges and internal vertices of X ′ from X.” If vi 6= vj, then we get

two distinct walks (a v0 − vi walk and a vj − vk walk) after deletion. But if vi = vj, then

we get one walk (a v0 − vk walk) after deletion.

We prove Theorem 1.6 by algorithm.

Theorem (Theorem 1.6, CZ). If a graph G contains a u − v walk of length ℓ, then G

contains a u − v path of length at most ℓ.

Proof. Given a u − v walk W in G of length ℓ, we execute the following algorithm.

1: while W contains repeated vertices do {

2: let x be some vertex that occurs (at least) twice on W

3: delete an x − x subwalk from W

4: }

5: return W as the desired path

We prove this algorithm correct by showing that

1. If the algorithm terminates, then it returns a u − v path of length at most ℓ.

2. The algorithm terminates.



2 MCS-236: Handout #Ch1

First note that W is a u − v walk before and after each iteration of the while loop.

Suppose the algorithm terminates. Then line 5 must have been executed, which means

the while loop exits. Since the loop exits only when W contains no repeated vertices, we

see that the algorithm returns a u− v path. This path must have length at most ℓ since

it is derived from the input walk by having some (if any) subwalk(s) deleted from it.

Each time the body of the loop executes, the length of the walk W decreases by some

positive amount. Now, a walk of shortest possible length is the trivial walk of length 0.

Since the input walk has length ℓ, the while statement iterates no more than ℓ times.

This means the algorithm terminates.

This completes the proof.

Definition. Let G = (V, E) be a graph. A path P : v0, v1, . . . , vℓ−1, vℓ in G is called

maximal if all neighbors of the ends of P are on P . In other words, if v0x is an edge

of G then x = vi for some 0 < i ≤ ℓ, and if vℓx is an edge of G then x = vi for some

0 ≤ i < ℓ.

Exercise. Give an algorithm for getting a maximal path.

We prove Thereom 1.9 by consideration of a maximal path (instead of longest geodesic

like in CZ).

Theorem (Theorem 1.9, CZ). If G is a connected graph of order 2 or more, then G con-

tains two distinct vertices u and v such that G − u is connected and G − v is connected.

Proof. Let P be a maximal path in G, and let u and v be the end vertices of P . Since G

is connected and nontrivial, G has no isolated vertex. Thus, none of G’s maximal paths

is trivial. Therefore, u 6= v.

First we’ll prove that G−u is connected. Let x and y be any vertices in G−u. Since

G is connnected, G contains an x − y path, say Q. We consider two possibilities.

Case 1: u is not on Q. Then Q is an x−y path in G−u as well. Thus, x ∼ y in G−u.

Case 2: u is on Q. Then u appears on Q exactly once since Q is a path. Say that

Q : x = w0, w1, . . . , wi, wi+1 = u, wi+2, . . . , wk = y. Since P is a maximal path with u as

one of its end vertices, all neighbors of u is on P . This means that P contains a wi−wi+2

subpath P ′. Now let Q′ be the result of replacing the subpath wi, u, wi+2 on Q by P ′.



MCS-236: Handout #Ch1 3

Then Q′ is an x−y walk in G−u. By Thereom 1.6, Q′ contains an x−y path (in G−u).

Thus, x ∼ y in G − u.

In both cases, we have shown that x ∼ y in G − u. Thus, G − u is connected.

That G − v is connected can be proved in a similar way.


