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Connectivity

5.1 Cut Vertices

Definition 1. A vertex v in a connected graph G is a cut vertex if G−v is disconnected.

Definition 2. A vertex v in a graph G is a cut vertex if G − v has more connected

components than G.

Exercise. Prove that these two definitions are equivalent.

Lemma (End-Vertex Lemma). If v is an end vertex in a graph G, then v is not a cut

vertex of G.

Proof. Let v belong to the connected component H of G. Grow a maximal path P

starting from v. Since deg v = 1, vertex v is one of the two ends of P . By the Maximal

Path Theorem, H − v is connected. Thus v is not a cut vertex.

Theorem (CZ, Theorem 5.1). Let G be a graph containing a bridge e incident with

vertex v. Vertex v is a cut vertex if and only if deg v ≥ 2.

Proof. Let G be a graph containing a bridge e incident with vertex v.

⇒: Suppose deg v < 2. Since e is incident with v, we have deg v ≥ 1. Thus, deg v = 1.

By the End-Vertex Lemma, v is not a cut vertex.

⇐: Suppose deg v ≥ 2 but v is not a cut vertex. Let bridge e join v to w and let H be

the connected component of G that contains v. Since deg v ≥ 2, vertex v is adjacent

to some vertex x that is different from v or w. Therefore, in H , vertex w is connected

to vertex x via the path P : w, v, x. This says that vertices v, w, and x are all in the

same component H . By assumption, vertex v is not a cut vertex of G; thus v is not a

cut vertex of H , i.e., H − v is connected. This says that all vertices in H − v are in the

same component. Hence, vertex w is connected in H − v to vertex x via some path Q.

Concatenating P to Q gives a cycle in H . This cycle contains edge e, contradicting the

fact that e is a bridge.
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Corollary (CZ, Corollary 5.2). Let G be a connected graph of order 3 or more. If G

contains a bridge, then G contains a cut-vertex.

Proof. Let G be a connected graph of order at least 3 and let e = vw be a bridge in G.

By the Bridge Lemma, G − e consists of two components: component Gv containing v

and component Gw containing w. Since G has at least 3 vertices, at least one of Gv

and Gw has more than one vertex. Assume wlog that Gv has more than one vertex.

Thus, degGv

v ≥ 1. Since v is adjacent in G to w but w is not in Gv, we conclude that

degG v ≥ 2. By Theorem 5.1 v is a cut vertex (in G).

Theorem (CZ, Corollary 5.4). A vertex v of a connected graph G is a cut vertex of G

if and only if there exist vertices u and w distinct from v such that there’s at least one

u − w path in G and v lies on every u − w path in G.

Proof. Suppose v is a cut vertex of a connected graph G. Then G − v is disconnected,

i.e., it has at least 2 connected components. Let u be any vertex in G − v and let w be

any other vertex in G − v belonging to some component different from u’s. Since G is

connected, there exist some u−w path in G. However, there exist no u−w path in G−v

because u and w come from different components of G− v. This implies that each u−w

path in G passes through v, since G− v differs from G only in that G− v misses vertex v

and all edges incident to v.

Conversely, suppose v is any vertex in a connected graph G and G contains some ver-

tices u, w such that there’s at least one u − w path in G and v lies on every u − w path

in G. This assumption implies that any u −w path in G can no longer be a u − w path

when vertex v and all its incident edges are deleted from G. Thus, G− v is disconnected

since it has vertices u and w that are not connected. Hence, v is a cut vertex of G.

Theorem (CZ, Corollary 5.6). Every nontrivial connected graph contains at least two

vertices that are not cut vertices.

Proof. This is just Theorem 1.9 (with the phrase “connected graph of order 3 or more”

changed to “connected nontrivial graph”) restated in terms of cut vertices. See Hand-

out #5.
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5.2 Blocks

Definition. A nonseparable graph is nontrivial, connected, and has no cut vertex.

Note: K2 is the only nonseparable graph of order less than 3.

Theorem (CZ, Theorem 5.7). A graph of order at least 3 is nonseparable if and only if

every two vertices lie on a common cycle.

Proof. Let G be a graph of order at least 3.

Suppose every two vertices of G lie on a common cycle. Graph G is nontrivial since its

order is at least 3. Let x, y be two vertices of G. By assumption there is a cycle C that

contains both x and y. Thus there is an x− y path along C. Hence G is connected. Fix

a vertex v. Let u, w be any two vertices distinct from v. By assumption there is a cycle

that contains both u and w. This cycle gives two internally disjoint u−w paths, at least

one of which does not go through v. Hence, v is not a cut vertex by Corollary 5.4. Thus,

graph G contains no cut vertex. Therefore, G is nonseparable.

Conversely, suppose G is nonseparable. Let u be a vertex of G. We will prove that if v

is any vertex of G distinct from u, then there is a cycle that goes through both u and v,

by induction on the distance d(u, v) between u and v. First suppose that d(u, v) = 1,

i.e., G has an edge e joining u to v. Since G has order at least 3 and it contains no cut

vertex (because G is nonseparable), we conclude by Corollary 5.2 that G contains no

bridge. Therefore, e is not a bridge; and thus some cycle C contains e. Hence, cycle C

contains both u and v (since e joins u to v). Next suppose that d(u, v) = k > 1 and

assume inductively that for any vertex x, where 0 < d(u, x) < k, there exists some cycle

that goes through both u and x. Let P : u = v0, v1, . . . , vk−1, vk = v be a u− v geodesic.

Since 0 < d(u, vk−1) = k − 1 < k, there exists, by inductive assumption, a cycle C that

passes through both u and vk−1. If cycle C goes through vk as well, then we are done.

So assume from now on that C does not go through vk. Since G contains no cut vertex,

vk−1 is not a cut vertex. This means that there exists some path in G − vk−1 (and in G

as well) connecting vk to some vertex x ∈ V (C) \ vk−1. Let Q be such a path of shortest

possible length. Appending the x − vk−1 path in C that goes through u (this path is

unique if x 6= u) to Q gives a v−vk−1 path P ′ in G that goes through u. Path P ′ together

with edge vk−1vk gives a cycle in G that goes through both u and v. Our claim follows

by induction.
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Definition. Let G be a graph of positive size. Define a relation R on E(G) as follows.

For any edges e and f , declare eRf iff e = f or there is a cycle in G that contains both

e and f .

Theorem (CZ, Theorem 5.8). The relation R is an equivalence relation.

Proof. . . .

Definition 1. A block of G is a nonseparable subgraph of G that is not a proper subgraph

of any other nonseparable subgraph of G.

Definition 2. A block of G is a subgraph of G induced by the edges in an equivalence

class defined by the relation R defined above.

Theorem (CZ, Exercise 5.15). The two definitions of block are equivalent.

Proof. . . .

Corollary (CZ, Corollary 5.9). Every two distinct blocks B1 and B2 in a nontrivial

connected graph G have the following properties:

(a) The blocks B1 and B2 are edge-disjoint.

(b) The blocks B1 and B2 have at most one vertex in common.

(c) If B1 and B2 have a vertex v in common, then v is a cut vertex of G.

Proof. (a) By definition 2 of block, the edges E(B1) of block B1 and the edges E(B2) of

block B2 belong to different equivalence classes. Therefore, E(B1) ∩ E(B2) = ∅.

(b) Assume for the sake of contradiction that |V (B1)∩V (B2)| ≥ 2. Since B1 is connected

(because it’s a block), for any two vertices shared by the two blocks there exists a path

in B1 connecting them. Let P1 be a shortest path in B1 connecting any two shared

vertices; say that P1 connects v to w. Path P1 is nontrivial since v 6= w. Since B2 is

connected (because it’s a block), there exists a path P2 in B2 connecting v to w. Path P2

is nontrivial since v 6= w. Concatenating P1 to P2 gives a cycle containing some edge e1

in B1 and some edge e2 in B2. Thus, e1 and e2 belong to the same block by definition 2

of block. This contradicts part (a).

(c) Let v ∈ V (B1) ∩ V (B2). Being a block, B1 is connected and nontrivial; thus, there

exists u1 ∈ V (B1) adjacent to v. Being a block, B2 is connected and nontrivial; thus,

there exists u2 ∈ V (B2) adjacent to v.
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We’ll show that every u1 −u2 path in G contains v. Assume for the sake of contradiction

that there is some u1 − u2 path P in G not containing v. Path P together with v and

edges u1v and vu2 give a cycle C containing both u1v and vu2. Hence, edges u1v and

vu2 belong to the same equivalence class, i.e., same block. This contradicts part (a).

Therefore, v is a cut vertex of G.

5.3 Connectivity

Definitions. Let G = (V, E) be a connected graph. A subset U of V is called a vertex cut

if G−U is disconnected. A minimum vertex cut of G is a vertex cut of least cardinality.

The (vertex) connectivity κ(G) of G is defined as follows: for a disconnected graph G,

κ(G) = 0; for a connected graph G, κ(G) equals the cardinality of a smallest vertex

subset U such that G − U is either disconnected or trivial. A graph G is k-connected

if κ(G) ≥ k. Note that any graph G satisfies 0 ≤ κ(G) ≤ n − 1. Note also that for a

connected graph G of order n, κ(G) = n − 1 if and only if G ∼= Kn.

Let G = (V, E) be a connected graph. A subset X of E is an edge cut if G − X is

disconnected. An edge cut X is minimal if no proper subset of X is an edge cut. A

minimum edge cut is an edge cut of minimum size.

Note that a minimal edge cut is not necessarily minimum, but every minimum edge cut

is necessarily minimal. (Prove!)

The following lemma characterizes minimal edge cuts.

Lemma (Minimal Edge Cut Lemma). If X is a minimal edge cut of a connected graph G,

then G − X contains exactly 2 components. Moreover, X consists of all the edges of G

that join a vertex in one component to a vertex in another component.

Proof. Assume G is a connected graph and X is a minimal edge cut of G. Choose any

edge e ∈ X, say e joins u to v. We have G − X is disconnected but G − (X \ {e})

is connected. This means that e is a bridge in G − (X \ {e}). By the Bridge Lemma,

G − (X \ {e}) − e consists of exactly two components, one containing u and the other

containing v. Since G − (X \ {e}) − e = G − X, we conclude that G − X consists of

exactly two components, say G1 and G2, and every edge of X joins a vertex in G1 to a

vertex in G2.
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Let e be any edge in G joining a vertex in G1 to a vertex in G2. We’ll show that e ∈ X.

Suppose not. Then G − X contains edge e. This contradicts G1 and G2 are distinct

components in G − X.

The edge connectivity λ(G) of G is defined as follows: for a disconnected graph G,

λ(G) = 0; for a connected graph G, λ(G) equals the cardinality of a smallest edge

subset X such that G−X is either disconnected or trivial. A graph G is k-edge-connected

if λ(G) ≥ k. Note that any graph G satisfies 0 ≤ λ(G) ≤ n − 1.

CZ, Example 5.10 Show that λ(Kn) = n − 1.

Proof. . . .

Theorem (CZ, Theorem 5.11). For any graph G,

κ(G) ≤ λ(G) ≤ δ(G).

Proof. . . .


