
MCS-236: Graph Theory Handout #Ch6

San Skulrattanakulchai

Gustavus Adolphus College Nov 3, 2010

Chapter 6: Traversability

6.1 Eulerian Graphs

Definitions. An Eulerian circuit of a graph G is a closed trail containing every edge of G.

An Eulerian graph is a connected graph containing an Eulerian circuit. An Eulerian trail

of a graph G is an open trail containing every edge of G.

Theorem (Theorem 6.1 of CZ). A nontrivial, connected graph G is Eulerian if and only

if every vertex of G has even degree.

Proof. Only if: . . .

If: Assume graph G is nontrivial, connected, and every vertex of it has even degree. We

execute the following algorithm on G.

1: H ← G

2: T ← 〈s〉, where s is some vertex of H

3: while H is not an empty graph do {

4: x← any vertex on T incident with some edge of H

5: T ′ ← maximal trail in H starting at x (thus ending at x as well)

6: insert T ′ into T at x

7: H ← H − E(T ′) }

8: return T as the desired circuit

It can be shown that this algorithm works correctly by proving three points.

1. The algorithm never gets stuck.

2. The algorithm terminates.

3. When the algorithm terminates, T is an Eulerian circuit of G.
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Corollary (Corollary 6.2 of CZ). A connected graph G contains an Eulerian trail if and

only if exactly 2 vertices of G have odd degree. Furthermore, each Eulerian trail of G

begins at one of these odd vertices and ends at the other.

Proof. . . .

Example 6.3. Find a necessary and sufficient condition for the graph G×H of nontrivial

connected graphs G and H to be Eulerian.

Answer. Either both G and H are Eulerian, or every vertex of G and H is odd.

Note. The theorem and corollary of this section are correct for multigraphs as well.

6.2 Hamiltonian Graphs

Definitions. A Hamiltonian cycle of a graph G is a spanning cycle of G, i.e., a cycle

that contains every vertex. A Hamiltonian graph is a graph that contains a Hamiltonian

cycle. A Hamiltonian path in a graph G is a spanning path of G, i.e., a path that contains

every vertex.

Theorem (Theorem 6.4 of CZ). The Petersen graph is non-Hamiltonian.

Proof. . . .

Note. Lines 7–8 in the proof of Theorem 6.4 of CZ on page 143 states, “Without loss

of generality, assume that C ′ contains at least three edges of C.” We will validate this

claim. The justification for this statement is as follows: If C ′ doesn’t contain at least

three edges of C, but it fact C ′′ does, then it is possible to redraw any labeled Petersen

Graph in such a way that C ′ and C ′′ are switched, i.e., the inner cycle becomes an outer

one, and vice versa. We then apply the same reasoning that follows to the redrawn graph.

Now to the switching. Consider the Petersen Graph PG = (V, E) with vertex set

V = { ui, vi : 1 ≤ i ≤ 5 }

and edges as depicted in this diagram.
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Let ϕ : V → V be defined by

ϕ(u1) = v1 ϕ(u2) = v5 ϕ(u3) = v4 ϕ(u4) = v3 ϕ(u5) = v2

ϕ(v1) = u1 ϕ(v2) = u2 ϕ(v3) = u3 ϕ(v4) = u4 ϕ(v5) = u5

It’s straightforward to check that ϕ is an automorphism (an isomorphism from the vertex

set of a graph onto inself). In fact, more can be said about ϕ. This automorphism ϕ

maps the “inner cycle” into the “outer cycle” and vice versa! The following diagram

depicts ϕ(PG), drawn in such way as to reflect this fact. (In the new drawing, each

vertex x in the previous drawing is labeled by its image ϕ(x).)
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This is why it is immaterial which one of the “two cycles” of PG is considered “outer”

and which one “inner.”

Theorem (Theorem 6.5 of CZ). Let G be a Hamiltonian graph and let S be such that

∅ ⊂ S ⊂ V (G). Let G− S have k connected components. Then k ≤ |S|.

Proof. Assume the hypotheses and suppose for the sake of contradiction that k > |S|.

Since G is Hamiltonian, it contains some spanning cycle; let C be a spanning cycle.
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Let the graph C − S consists of ℓ connected components, say P1, P2, . . . , Pℓ, where each

component is a path. We see that |S| ≥ ℓ.

For each component i of G − S, where 1 ≤ i ≤ k, choose a representative vertex vi.

Since k > |S| ≥ ℓ, the Pigeonhole Principle asserts that some component Pr of C − S

contains at least two distinct vertices vs and vt. In C − S, vertex vs is connected to vt

since path Pr passes through them. Since C − S is a subgraph of G − S, path Pr is a

path in G− S as well. Thus, vertices vs and vt belong to the same component of G− S,

contradicting the fact that they are representatives of distinct components of G−S.

Corollary. No Hamiltonian graph has a cut vertex.

Proof. . . .

Theorem (Bondy & Chvatal, Theorem 6.8 of CZ). Let u and v be nonadjacent vertices

in a graph G of order n such that deg u + deg v ≥ n. Then G + uv is Hamiltonian if and

only if G is.

Proof. Suppose G is Hamiltonian. Then there exists a spanning cycle C in G. Cycle C

is a spanning cycle in G + uv as well. Hence, G + uv is Hamiltonian.

Conversely, suppose G + uv is Hamiltonian and let C be a spanning cycle in it. If

C doesn’t contain edge uv, then C is a spanning cycle in G as well, and thus G is

Hamiltonian. So assume from now on that C contains edge uv. Deleting edge uv from C

gives a u − v path P that spans G + uv. Path P spans G as well. Say that P is the

path u = v1, v2, . . . , vn = v. We know n ≥ 3 since G + uv is Hamiltonian so it contains

a spanning cycle; and every cycle has length at least 3. We observe that n > 3 because

if n = 3, then degG v1 + degG v3 = 2 < 3 = n contradicting degG u + degG v ≥ n. So, in

particular, we know v2 6= vn−1.

Claim. There exists an index j, where 3 ≤ j ≤ n − 1, such that v1vj and vj−1vn are

edges of G.

Proof of claim. Suppose not. Let k be the number of neighbors of v1 in {v3, v4, . . . , vn−1}.

Let ℓ be the number of neighbors of vn in {v2, v3, . . . , vn−2}. Since the claim doesn’t hold

by supposition, exactly k vertices in {v2, v3, . . . , vn−2} are not allowed to be neighbors

of vn. Thus

ℓ ≤ |{v2, v3, . . . , vn−2}| − k = (n− 3)− k,



MCS-236: Handout #Ch6 5

i.e.,

k + ℓ ≤ n− 3.

Since v1v2 ∈ E(G) and v1vn /∈ E(G), we see that

degG u = degG v1 = k + 1.

Since vn−1vn ∈ E(G) and v1vn /∈ E(G), we see that

degG v = degG vn = ℓ + 1.

Thus, we have

(k + 1) + (ℓ + 1) ≤ (n− 3) + 2

i.e.,

degG u + degG v ≤ n− 1

contradicting the assumption that degG u + degG v ≥ n.

Let j be an index that exists by the claim. Then v1, vj, vj+1, . . . , vn, vj−1, vj−2, . . . , v1 is

a spanning cycle of G. Thus, G is Hamiltonian.

Definition. The closure C(G) of a graph G is the graph obtained by, starting from G,

repeatedly joining any pair of nonadjacent vertices whose degree sum in the current graph

is at least n, until no such pair exists.

Theorem (Theorem 6.9 of CZ). Graph G is Hamiltonian if and only if C(G) is.

Proof. . . .

Corollary (Corollary 6.10 of CZ). If a graph G has n ≥ 3 and C(G) is complete, then

G is Hamiltonian.

Proof. . . .

Theorem (Ore, Theorem 6.6 of CZ). Let G be a graph of order n ≥ 3. If deg u+deg v ≥ n

for each pair of nonadjacent vertices of G, then G is Hamiltonian.

Proof. Since C(G) is complete, the result follows by the preceding Corollary.

Theorem (Dirac, Theorem 6.7 of CZ). Let G be a graph of order n ≥ 3. If deg v ≥ n/2

for each vertex v of G, then G is Hamiltonian.

Proof. By Ore’s Theorem.


