Basic Set Theory

- A set is a collection of objects considered as a whole. The main concept is that of *membership*. Given an object x and a set A, we should be able to answer whether x is a member of A or not.
- Similar terms: set, class, collection, family, space
- finite sets vs. infinite sets
- Some important number sets

$$\mathbb{N} = \{0, 1, 2, 3, \ldots\}$$

 \mathbb{Z} = the set of all integers

 \mathbb{Q} = the set of all rational numbers

 \mathbb{R} = the set of all real numbers

 \mathbb{C} = the set of all complex numbers

• Examples of sets written

by enumeration: $\{1, 2, 3\}$

by set former: $\{n \in \mathbb{Z} : |n| \le 3\}$

by formulaic set former: $\{n^2 : n \in \mathbb{N}\}$

- The empty set \emptyset (sometimes written $\{\}$) has no member.
- Two sets are equal, written A = B, if they contain the same elements.
- Notation:

\in	is a member of	∉	is not a member of
\subseteq	is a subset of	<u> </u>	is a proper subset of
$\not\sqsubseteq$	is not a subset of	¢	is not a proper subset of
\supseteq	is a superset of	\supset	is a proper superset of
	is not a superset of	Þ	is not a proper superset of

where

 $A \subseteq B$ means "for all x, if $x \in A$ then $x \in B$."

 $A \subset B$ means " $A \subseteq B$ and $A \neq B$."

 $A \supseteq B$ means " $B \subseteq A$."

 $A\supset B$ means " $B\subset A$."

- A = B if and only if $A \subseteq B$ and $B \subseteq A$.
- Set operations:

U	union
\cap	intersection
\	set difference
\overline{A}	complement of A

where

 $A \cup B$ means $\{x : x \in A \text{ or } x \in B\}.$

 $A \cap B$ means $\{x : x \in A \text{ and } x \in B\}.$

 $A \setminus B$ means $\{ x : x \in A \text{ and } x \notin B \}.$

 \overline{A} means $U \setminus A$ (where U is the "universal set").

- Sets A and B are disjoint if their intersection is empty, i.e., $A \cap B = \emptyset$.
- Venn-Euler Diagram can help one understand why some theorem is true, or even suggest a proof.
- Some rules governing set operations:

3

$$A \cup B = B \cup A \qquad \qquad \text{(commutativity of union)}$$

$$A \cap B = B \cap A \qquad \qquad \text{(commutativity of intersection)}$$

$$(A \cup B) \cup C = A \cup (B \cup C) \qquad \qquad \text{(associativity of union)}$$

$$(A \cap B) \cap C = A \cap (B \cap C) \qquad \qquad \text{(associativity of intersection)}$$

$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C) \qquad \qquad \text{(distributivity)}$$

$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C) \qquad \qquad \text{(distributivity)}$$

$$\overline{A} = A \qquad \qquad \text{(double complement)}$$

$$\overline{A \cup B} = \overline{A} \cap \overline{B} \qquad \overline{A \cap B} = \overline{A} \cup \overline{B} \qquad \text{(DeMorgan's laws)}$$

• Definition of $+: |A| + |B| = |A \cup B|$ whenever $A \cap B = \emptyset$.

Theorem.
$$|A \cup B| = |A| + |B| - |A \cap B|$$

$$Proof.$$
 ...

- $\bullet \ \min, \, \max, \, \sum, \, \prod \, \, , \, \bigcup, \, \bigcap : \, \mathrm{definition}, \, \mathrm{notation}$
- work through an example of min, max combination of a real matrix
- $\min(A \cup B) = \min\{\min A, \min B\}$ $\min \bigcup_{i \in I} A_i = \min\{\min A_i : i \in I\}$ similarly for max
- $\min \emptyset = +\infty$ $\max \emptyset = -\infty$
- The power set $\mathcal{P}(A)$ (or 2^A) of A is the collection of all subsets of A. In other words, $\mathcal{P}(A) = \{S : S \subseteq A\}$.

Theorem. If A is a finite set, then $|\mathcal{P}(A)| = 2^{|A|}$.

Proof. ...
$$\Box$$

• Given a set of n objects, the number of ways to select k objects from them is written $\binom{n}{k}$, and is read n choose k.

Theorem.
$$\binom{n}{k} = \frac{n!}{k!(n-k)!}$$
.

$$Proof.$$
 ...

In particular, $\binom{n}{2} = \frac{n(n-1)}{2}$.

Theorem (Pigeonhole Principle). If n pigeons fly into k holes, then at least 1 hole has at least $\lceil n/k \rceil$ pigeons.

$$Proof.$$
 ...

Theorem (Ramsey's Theorem). Let $P = \{S_1, S_2, \ldots, S_k\}$ be a partition of a set S into k subsets, and let n_1, n_2, \ldots, n_k be k positive integers such that $|S_i| \geq n_i$ for every integer i with $1 \leq i \leq k$. Then there exists a positive integer N such that every N-element subset of S contains at least n_i elements of S_i for some $i(1 \leq i \leq k)$.

In particular, the integer

$$N = 1 + \sum_{i=1}^{k} (n_i - 1)$$

is the least integer with this property.

$$Proof.$$
 ...