Basic Set Theory

- A set is a collection of objects considered as a whole. The main concept is that of membership. Given an object x and a set A, we should be able to answer whether x is a member of A or not.
- Similar terms: set, class, collection, family, space
- finite sets vs. infinite sets
- Some important number sets
$\mathbb{N}=\{0,1,2,3, \ldots\}$
$\mathbb{Z}=$ the set of all integers
$\mathbb{Q}=$ the set of all rational numbers
$\mathbb{R}=$ the set of all real numbers
$\mathbb{C}=$ the set of all complex numbers
- Examples of sets written
by enumeration: $\{1,2,3\}$
by set former: $\{n \in \mathbb{Z}:|n| \leq 3\}$
by formulaic set former: $\left\{n^{2}: n \in \mathbb{N}\right\}$
- The empty set \emptyset (sometimes written $\}$) has no member.
- Two sets are equal, written $A=B$, if they contain the same elements.
- Notation:

ϵ	is a member of	\notin	is not a member of
\subseteq	is a subset of	\subset	is a proper subset of
\nsubseteq	is not a subset of	$\not \subset$	is not a proper subset of
\supseteq	is a superset of	\supset	is a proper superset of
\nsupseteq	is not a superset of	$\not \supset$	is not a proper superset of

where
$A \subseteq B$ means "for all x, if $x \in A$ then $x \in B$."
$A \subset B$ means " $A \subseteq B$ and $A \neq B$."
$A \supseteq B$ means " $B \subseteq A$."
$A \supset B$ means " $B \subset A$."

- $A=B$ if and only if $A \subseteq B$ and $B \subseteq A$.
- Set operations:

\cup	union
\cap	intersection
\backslash	set difference
\bar{A}	complement of A

where
$A \cup B$ means $\{x: x \in A$ or $x \in B\}$.
$A \cap B$ means $\{x: x \in A$ and $x \in B\}$.
$A \backslash B$ means $\{x: x \in A$ and $x \notin B\}$.
\bar{A} means $U \backslash A$ (where U is the "universal set").

- Sets A and B are disjoint if their intersection is empty, i.e., $A \cap B=\emptyset$.
- Venn-Euler Diagram can help one understand why some theorem is true, or even suggest a proof.
- Some rules governing set operations:

$A \cup B=B \cup A$	(commutativity of union)		
$A \cap B=B \cap A$	(commutativity of intersection)		
$(A \cup B) \cup C=A \cup(B \cup C)$	(associativity of union)		
$(A \cap B) \cap C=A \cap(B \cap C)$	(associativity of intersection)		
$A \cup(B \cap C)=(A \cup B) \cap(A \cup C)$	(distributivity)		
$A \cap(B \cup C)=(A \cap B) \cup(A \cap C)$	(distributivity)		
$\overline{\bar{A}}=A$	(double complement)		
$\overline{A \cup B}=\bar{A} \cap \bar{B}$	$\overline{A \cap B}=\bar{A} \cup \bar{B}$	(DeMorgan's laws)	(DeMor
:---			

- Definition of $+:|A|+|B|=|A \cup B|$ whenever $A \cap B=\emptyset$.

Theorem. $|A \cup B|=|A|+|B|-|A \cap B|$

Proof. ...

- min, $\max , \sum, \Pi, \bigcup, \bigcap$: definition, notation
- work through an example of min, max combination of a real matrix
- $\min (A \cup B)=\min \{\min A, \min B\} \quad \min \bigcup_{i \in I} A_{i}=\min \left\{\min A_{i}: i \in I\right\}$
similarly for max
- $\min \emptyset=+\infty \quad \max \emptyset=-\infty$
- The power set $\mathcal{P}(A)$ (or 2^{A}) of A is the collection of all subsets of A. In other words, $\mathcal{P}(A)=\{S: S \subseteq A\}$.

Theorem. If A is a finite set, then $|\mathcal{P}(A)|=2^{|A|}$.

Proof. ...

- Given a set of n objects, the number of ways to select k objects from them is written $\binom{n}{k}$, and is read n choose k.

Theorem. $\binom{n}{k}=\frac{n!}{k!(n-k)!}$.
Proof. ...

In particular, $\binom{n}{2}=\frac{n(n-1)}{2}$.

Theorem (Pigeonhole Principle). If n pigeons fly into k holes, then at least 1 hole has at least $\lceil n / k\rceil$ pigeons.

Proof. ...
Theorem (Ramsey's Theorem). Let $P=\left\{S_{1}, S_{2}, \ldots, S_{k}\right\}$ be a partition of a set S into k subsets, and let $n_{1}, n_{2}, \ldots, n_{k}$ be k positive integers such that $\left|S_{i}\right| \geq n_{i}$ for every integer i with $1 \leq i \leq k$. Then there exists a positive integer N such that every N-element subset of S contains at least n_{i} elements of S_{i} for some $i(1 \leq i \leq k)$.

In particular, the integer

$$
N=1+\sum_{i=1}^{k}\left(n_{i}-1\right)
$$

is the least integer with this property.
Proof. ...

