Relations, Functions, and Sequences

Relations

- An ordered pair can be constructed from any two mathematical objects. For example, the ordered pair $(2,1)$ has 2 as its first component and 1 as its second component. The ordered pair $(0,0)$ has 0 in both components. If \cdot stands for the multiplication operation then the ordered pair (\mathbb{N}, \cdot) has the set of natural numbers as its first component and multiplication as its second component.
- Two ordered pairs (a, b) and (c, d) are said to be equal, written $(a, b)=(c, d)$, if $a=c$ and $b=d$.
- An ordered pair is different from an unordered pair. So $(a, a) \neq\{a, a\},(a, b) \neq$ (b, a), but $\{a, b\}=\{b, a\}$.
- Given two sets A and B, we define its Cartesian product, written $A \times B$, to be $A \times B=\{(a, b): a \in A, b \in B\}$. For example, the plane we study in analytic geometry is simply $\mathbb{R} \times \mathbb{R}$ (also written \mathbb{R}^{2}).
- A relation R from A to B is some subset of $A \times B$. If $(a, b) \in R$, we say that a is related to b in R, and write $a R b$.

The empty set \emptyset is the smallest relation from A to B.
The relation $A \times B$ is the biggest relation from A to B.

- A relation R from A to A is called a relation on A. Here are some examples.

The unit circle U centered at the origin is a relation on \mathbb{R} since U is $\left\{(x, y) \in \mathbb{R}^{2}\right.$: $\left.x^{2}+y^{2}=1\right\}$, a subset of \mathbb{R}^{2}.

The relations $<, \leq,>, \geq,=$ and their negations are all relations on \mathbb{R}.
'is a brother (sister, parent, sibling, etc) of' are relations on humans.

- A relation R on A is said to be reflexive if $a R a$ for all $a \in A$.
- A relation R on A is said to be symmetric if $b R a$ whenever $a R b$.
- A relation R on A is said to be transitive if $a R c$ whenever both $a R b$ and $b R c$.
- (How to axiomatize equality.) A relation R on a set A is said to be an equivalence relation if R is reflexive, symmetric, and transitive.
- Show that if we define " $a R b$ if $a^{2}-b^{2}$ is even", then R is an equivalence relation on \mathbb{Z}.
- A partition of a set S is a nonempty collection of disjoint, nonempty subsets of S whose union equals S. For example, if $\mathcal{P}=\left\{S_{1}, S_{2}, \ldots, S_{k}\right\}$ is a partition of S into k subsets, then we have that (i) $S_{i} \neq \emptyset$ for any i, (ii) $\bigcup_{i=1}^{k} S_{i}=S$, and (iii) $S_{i} \cap S_{j}=\emptyset$ if $i \neq j$. In general, a partition may be infinite.
- Equivalence relation and partition are closely related concepts. Given an equivalence relation, there is a unique partition associated with it, and vice versa.
- Let X be any set and let \mathcal{C} be any collection of subsets of X, i.e., for every C, if $C \in \mathcal{C}$ then $C \subseteq X$. We define $\bigcup \mathcal{C}$ to be $\bigcup \mathcal{C}=\{y: y \in C$ for some $C \in \mathcal{C}\}$.
Let R be an equivalence relation on X. For each $a \in X$, define the equivalence class of a under the relation R, written $[a]_{R}$, to be the set of all elements of X that a is related to, i.e., $[a]_{R}=\{x \in X: a R x\}$.

Theorem. For any $a, b \in X$ and any equivalence relation R on X, we have $a R b$ if and only if $[a]_{R}=[b]_{R}$.

Proof. Assume that a, b are any elements of X and R is any equivalence relation on X.

Suppose $a R b$. We will prove that $[a]_{R}=[b]_{R}$. We'll first show that $[a]_{R} \subseteq[b]_{R}$. So let c be an arbitrary element in $[a]_{R}$. By definition of $[a]_{R}$, we have $a R c$. So by symmetry of R, we see that $c R a$. By assumption, $a R b$. So by transitivity of R, it follows that $c R b$. Again by symmetry of R, we see that $b R c$. So by defintion of $[b]_{R}$, we conclude that $c \in[b]_{R}$. We have now shown that every elment in $[a]_{R}$ is also a member of $[b]_{R}$. In other words, $[a]_{R} \subseteq[b]_{R}$.

That $[b]_{R} \subseteq[a]_{R}$ can be proved in a similar way. Thus $[a]_{R}=[b]_{R}$.
Conversely, suppose that $[a]_{R}=[b]_{R}$. We will show that $a R b$. Since R is reflexive, we know that $b R b$. So by definition of $[b]_{R}$, we conclude that $b \in[b]_{R}$. Since $[a]_{R}=[b]_{R}$ by assumption, we then have that $b \in[a]_{R}$. So by defintion of $[a]_{R}$, we conclude that $a R b$.

Theorem. Let R be an equivalence relation on X. Define \mathcal{P} to be $\mathcal{P}=\left\{[x]_{R}: x \in\right.$ $X\}$. The collection \mathcal{P} is then a partition of X.

Proof. To prove that \mathcal{P} is a partition of X, we have to show that

1. $[x]_{R} \neq \emptyset$ for all $x \in X$,
2. for any $a, b \in X$, if $[a]_{R} \cap[b]_{R} \neq \emptyset$ then $[a]_{R}=[b]_{R}$, and
3. $\bigcup \mathcal{P}=X$.

We prove item 1 as follows. Let x be an arbitrary element of X. By the reflexivity of R, we conclude $x R x$. This means that the equivalence class $[x]_{R}$ is not empty since it contains at least an element, specifically element x.

We prove item 2 as follows. Suppose a, b are any elements of X such that $[a]_{R} \cap[b]_{R} \neq$ \emptyset. Let $c \in\left([a]_{R} \cap[b]_{R}\right)$. Then $c \in[a]_{R}$ and $c \in[b]_{R}$. Since $c \in[a]_{R}$, we see that $a R c$ by definition of $[a]_{R}$. Therefore, $[a]_{R}=[c]_{R}$ by last theorem. Since $c \in[b]_{R}$, we see that $b R c$ by definition of $[b]_{R}$. Therefore, $[b]_{R}=[c]_{R}$ by last theorem. (Therefore, $[c]_{R}=[b]_{R}$ as well since equality of sets is an equivalence relation.) Therefore, $[a]_{R}=[c]_{R}$ and $[c]_{R}=[b]_{R}$. So $[a]_{R}=[b]_{R}$ by transitivity of set equality.

We prove item 3 as follows. Since each element of \mathcal{P} is a subset of X, we conclude that $\cup \mathcal{P} \subseteq X$. Now let x be an arbitrary element of X. Then $x \in[x]_{R} \in \mathcal{P}$. Therefore, $x \in \bigcup \mathcal{P}$. Thus, $X \subseteq \bigcup \mathcal{P}$. Hence, $\bigcup \mathcal{P}=X$.

Theorem. Let \mathcal{C} be any partition of X. Define R to be a relation on X by declaring that for any $a, b \in X$, it holds that $a R b$ if and only if there exists a $C \in \mathcal{C}$ such that $a \in C$ and $b \in C$. The relation R so defined is then an equivalence relation on X.

Proof. ...

- For any relation R from A to B, we define its inverse relation R^{-1} to be $\{(b, a) \subseteq$ $B \times A:(a, b) \in R\}$.
- A relation R on X is called antisymmetric if for all $a, b \in X$ if $a R b$ and $b R a$, then $a=b$. A relation R on X is called asymmetric if for no $a \in X$ is $a R a$. A relation R on X is called a partial order if it is reflexive, transitive, and antisymmetric. A partial order R on X is a total order (or linear order) if for all $a, b \in X$, either $a R b$ or $b R a$. Let R be a partial order on X. An element a in X is called a minimal element if for any element $b \in X$, if $b R a$ then $b=a$. Similarly, an element a in X is called a maximal element if for any element $b \in X$, if $a R b$ then $b=a$. An element a in X is called a minimum element if $a R b$ for all elements $b \in X$. An element a in X is called a maximum element if $b R a$ for all elements $b \in X$.

- Exercises:

1. Let S be a nonempty set, and let \mathcal{C} be the collection of all subsets of S, i.e., $\mathcal{C}=\{C: C \subseteq S\}$. Prove that \subseteq is a partial order on \mathcal{C}.

Show that if $|S|>1$, then \subseteq is not a a total order.
2. Let $X=\{2,3,4,5,6,7,8,9,10\}$. Define R to be a relation on X by declaring that for all $a, b \in X$, we have $a R b$ if and only if a is factor of b. For example, $2 R 8,3 R 9$, but it's not true that $9 R 8$. Prove that R is a partial order on X.

Show that R is not a total order.
3. Prove that \leq is a total order on \mathbb{R}.
4. For each of the partial orders listed above, list all elements that are minimal, maximal, minimum, or maximum.

Functions

- A function f from set A to set B, written $f: A \rightarrow B$, is a relation from A to B such that each $a \in A$ is the first component of exactly one ordered pair. Set A is called the domain and set B is called the codomain of f. If $(a, b) \in f$, we write $b=f(a)$ and call b the image of a under f.

The range of f is defined to be $\{b \in B: b=f(a)$ for some $a\}$.

- A function f is injective (1-1) if $f(a)=f\left(a^{\prime}\right) \Longrightarrow a=a^{\prime}$ for all a, a^{\prime}.

A function is surjective (onto) if its range equals its codomain.
A function is bijective (1-1 and onto) if it is both injective and surjective.

- Theorem. A function $f: A \rightarrow A$ that is 1-1 (onto) is not necessarily onto (1-1) unless A is finite.

Proof. ...

- Given functions $f: A \rightarrow B$ and $g: B \rightarrow C$ we define the composite function $g \circ f$ to be the function from A to C such that $(g \circ f)(a)=g(f(a))$ for all $a \in A$.
- Theorem 2.4 (Appendix 2, CZ). If $f: A \rightarrow B$ and $g: B \rightarrow C$ are bijective, then $g \circ f$ is bijective.

Proof. ...

- Theorem 2.5 (Appendix 2, CZ). If $f: A \rightarrow B$ is a function, then f^{-1} is a bijective function if and only if f is bijective.

Proof. ...

- A permutation of A is any bijective $f: A \rightarrow A$.
- $|A|=|B|$ if there is a bijection $f: A \rightarrow B$

Sequences

- Let S be any nonempty set. A infinite sequence in S is a function from \mathbb{N} to S. A finite sequence in S is a function from $\{0,1,2, \ldots, n\}$ to S for some $n \in \mathbb{N}$.
- We usually write a sequence by enumerating its range like so

$$
\left\langle a_{0}, a_{1}, a_{2}, \ldots\right\rangle
$$

or like so

$$
\left(s_{0}, s_{1}, s_{2}, s_{3}, s_{4}, s_{5}\right)
$$

or even like so

$$
v_{0}, v_{1}, v_{2}, v_{3}, v_{4}
$$

- We sometimes start counting from 1 instead of 0 . So it's common to also see a sequence written as

$$
v_{1}, v_{2}, v_{3}, v_{4}, v_{5}
$$

etc.

