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Relations, Functions, and Sequences

Relations

e An ordered pair can be constructed from any two mathematical objects. For ex-
ample, the ordered pair (2,1) has 2 as its first component and 1 as its second
component. The ordered pair (0,0) has 0 in both components. If - stands for the
multiplication operation then the ordered pair (N, ) has the set of natural numbers

as its first component and multiplication as its second component.

e Two ordered pairs (a,b) and (c,d) are said to be equal, written (a,b) = (c,d), if
a=candb=d.

e An ordered pair is different from an unordered pair. So (a,a) # {a,a}, (a,b) #
(b,a), but {a,b} = {b,a}.

e Given two sets A and B, we define its Cartesian product, written A x B, to be
Ax B ={(a,b) : a € A;b € B}. For example, the plane we study in analytic
geometry is simply R x R (also written R?).

e A relation R from A to B is some subset of A x B. If (a,b) € R, we say that a is
related to b in R, and write aRb.
The empty set () is the smallest relation from A to B.

The relation A x B is the biggest relation from A to B.

e A relation R from A to A is called a relation on A. Here are some examples.

The unit circle U centered at the origin is a relation on R since U is {(z,y) € R? :
x? +y? = 1}, a subset of R%.

The relations <, <, >, >, = and their negations are all relations on R.

‘is a brother (sister, parent, sibling, etc) of’ are relations on humans.
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A relation R on A is said to be reflexive if aRa for all a € A.
A relation R on A is said to be symmetric if bRa whenever aRb.
A relation R on A is said to be transitive if aRc whenever both aRb and bRc.

(How to axiomatize equality.) A relation R on a set A is said to be an equivalence

relation if R is reflexive, symmetric, and transitive.

Show that if we define “aRb if a® — b* is even”, then R is an equivalence relation

on Z.

A partition of a set S is a nonempty collection of disjoint, nonempty subsets of S
whose union equals S. For example, if P = {5, S, ..., Sk} is a partition of S into k
subsets, then we have that (i) S; # () for any i, (i) U, S; = S, and (iii) S;N.S; = 0

if ¢ £ j. In general, a partition may be infinite.

Equivalence relation and partition are closely related concepts. Given an equiva-

lence relation, there is a unique partition associated with it, and vice versa.

Let X be any set and let C be any collection of subsets of X, i.e., for every C, if
C € C then C' C X. We define |JC to be |JC ={y : y € C for some C € C}.

Let R be an equivalence relation on X. For each a € X, define the equivalence
class of a under the relation R, written [a]g, to be the set of all elements of X that

a is related to, i.e., [a]gr = {x € X : aRx}.

Theorem. For any a,b € X and any equivalence relation R on X, we have aRb if

and only if [alr = [b] .

Proof. Assume that a, b are any elements of X and R is any equivalence relation
on X.

Suppose aRb. We will prove that [a|g = [b]g. We'll first show that [a]g C [b]r. So
let ¢ be an arbitrary element in [a|g. By definition of [a]g, we have aRe. So by
symmetry of R, we see that cRa. By assumption, aRb. So by transitivity of R,
it follows that ¢Rb. Again by symmetry of R, we see that bRc. So by defintion
of [b|r, we conclude that ¢ € [b]g. We have now shown that every elment in [a]g is

also a member of [b]z. In other words, [a]r C [b]g.
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That [b]g C [a]r can be proved in a similar way. Thus [a]g = [b] 5.

Conversely, suppose that [a]g = [b]g. We will show that aRb. Since R is reflexive,
we know that bRb. So by definition of [b]g, we conclude that b € [b]g. Since
[a]r = [b|r by assumption, we then have that b € [a]g. So by defintion of [a]g, we
conclude that al?b. [

Theorem. Let R be an equivalence relation on X. Define P to be P = {[z|g : x €
X}. The collection P is then a partition of X.

Proof. To prove that P is a partition of X, we have to show that

1. [#]g # 0 for all z € X,
2. for any a,b € X, if [algr N [b]gr # 0 then [a|g = [b]g, and
3. UP = X.

We prove item 1 as follows. Let x be an arbitrary element of X. By the reflexivity
of R, we conclude xzRx. This means that the equivalence class [z]g is not empty

since it contains at least an element, specifically element z.

We prove item 2 as follows. Suppose a, b are any elements of X such that [a|gN[b]r #
(0. Let ¢ € ([a]Jg N [b]r). Then ¢ € [a]g and ¢ € [b]r. Since ¢ € [a]r, we see that aRc
by definition of [a]g. Therefore, [a|g = [c|r by last theorem. Since ¢ € [b]r, we see
that bRc by definition of [b]r. Therefore, [b]g = [c]g by last theorem. (Therefore,
[clr = [b]r as well since equality of sets is an equivalence relation.) Therefore,

[alr = [c]r and [c]gr = [b]gr. So [a]g = [b]r by transitivity of set equality.

We prove item 3 as follows. Since each element of P is a subset of X, we conclude
that (JP C X. Now let # be an arbitrary element of X. Then z € [z]g € P.
Therefore, z € |JP. Thus, X C |JP. Hence, P = X. O

Theorem. Let C be any partition of X. Define R to be a relation on X by declaring
that for any a,b € X, it holds that aRb if and only if there exists a C' € C such that

a € C andbe C. The relation R so defined is then an equivalence relation on X.

Proof. ... [
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e For any relation R from A to B, we define its inverse relation R™* to be {(b,a) C
B x A: (a,b) € R}.

e A relation R on X is called antisymmetric if for all a,b € X if aRb and bRa, then
a = b. A relation R on X is called asymmetric if for no a € X is aRa. A relation R
on X is called a partial order if it is reflexive, transitive, and antisymmetric. A
partial order R on X is a total order (or linear order) if for all a,b € X, either aRb
or bRa. Let R be a partial order on X. An element a in X is called a minimal
element if for any element b € X, if bRa then b = a. Similarly, an element a in X is
called a mazimal element if for any element b € X, if aRb then b = a. An element
a in X is called a minimum element if aRb for all elements b € X. An element a

in X is called a mazimum element if bRa for all elements b € X.
e Exercises:

1. Let S be a nonempty set, and let C be the collection of all subsets of S, i.e.,
C ={C :C C S}. Prove that C is a partial order on C.

Show that if |S| > 1, then C is not a a total order.
2. Let X ={2,3,4,5,6,7,8,9,10}. Define R to be a relation on X by declaring

that for all a,b € X, we have aRb if and only if a is factor of b. For example,
2R8, 3R9, but it’s not true that 9R8. Prove that R is a partial order on X.

Show that R is not a total order.
3. Prove that < is a total order on R.

4. For each of the partial orders listed above, list all elements that are minimal,

maximal, minimum, or maximum.
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Functions

A function f from set A to set B, written f : A — B, is a relation from A to B
such that each a € A is the first component of exactly one ordered pair. Set A is
called the domain and set B is called the codomain of f. If (a,b) € f, we write
b= f(a) and call b the image of a under f.

The range of f is defined to be {b € B : b= f(a) for some a}.

A function f is injective (1-1) if f(a) = f(a') = a=d' for all a,d’.
A function is surjective (onto) if its range equals its codomain.

A function is bijective (1-1 and onto) if it is both injective and surjective.

Theorem. A function f: A — A that is 1-1 (onto) is not necessarily onto (1-1)

unless A is finite.

Proof. ... ]

Given functions f: A — B and g : B — C we define the composite function go f
to be the function from A to C such that (go f)(a) = g(f(a)) for all a € A.

Theorem 2.4 (Appendix 2, CZ). If f: A — B and g : B — C are bijective, then
g o f is bijective.

Proof. ... O

Theorem 2.5 (Appendix 2, CZ). If f : A — B is a function, then f~! is a bijective

function if and only if f is bijective.

Proof. ... n

A permutation of A is any bijective f: A — A.

|A| = |B| if there is a bijection f: A — B
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Sequences

e Let S be any nonempty set. A infinite sequence in S is a function from N to S. A

finite sequence in S is a function from {0,1,2,...,n} to S for some n € N.

e We usually write a sequence by enumerating its range like so

(ag,ay,as, . ..)
or like so
(807 581, 52, 83, S4, 85)
or even like so

Vo, V1, V2, U3, V4.

e We sometimes start counting from 1 instead of 0. So it’s common to also see a
sequence written as

U1, U2, U3, U4, Us

ete.



