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Methods of Proof

• Consider a set of mathematical objects having a certain number of operations

and relations defined on them. Take, for example, the natural numbers with the

usual arithmetical operations +,−,×,÷, and the < and = relations. We can state

various propositions involving these objects, their operations, and their relations.

For example,

∀n(2 < n =⇒ ¬(∃x∃y∃z(xn + yn = zn))).

How wonderful it would be if, given any such proposition, we could always determine

its truth value. Nobody knows of an algorithm for such a determination!

The accepted method of mathematical investigation is called the axiomatic method.

An axiom is a proposition that is assumed to be true. We begin by declaring a set

of axioms governing our mathematical structure. From then on, we will accept the

truth of any proposition p only when any one of the following occurs:

1. p is an axiom,

2. p is a tautology,

3. p can be logically inferred from other true propositions.

In the last case, p is said to be a theorem and the steps that were used to establish

the truth of p make up a proof of the theorem.

One property required of an axiom system is that it is consistent, i.e., no contradic-

tion can be proved within the system. Existence of a contradiction would render

the system totally useless since it allows one to prove any proposition. A desirable

property of the system is that it is complete, i.e., there exists a proof for every

true proposition, and there exists a proof for the negation of every false proposi-

tion. Gödel proved that no consistent axiom system powerful enough to include

the natural numbers and arithmetic can be complete!
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• Definitions are the tool we use to help us understand and communicate a proposition

in English. To appreciate definitions, try expressing the following proposition in

English (assuming N is our universe of discourse)

∃n[(n > 1) ∧ (∃k(n = 2 · k)) ∧ (∀d[(d 6= 1 ∧ d 6= n) =⇒ ∀k(k · d 6= n)]].

As usual we define an integer n to be even if there is an integer k such that n = 2·k.
Also define a natural number p to be prime if p > 1 and p = c · d only when c = p

or d = p. Now we see that the complicated proposition above says “there exists an

even prime number,” which happens to be true.

• The power of the axiomatic method comes from the general nature of axioms. The

mathematical objects, their operations, and their relations that the axioms talk

about are undefined and are subject to different interpretations. Therefore, there

may exist many different models (or worlds) that satisfy the same set of axioms.

• Consider a proposition q and a set of propositions P . We say that q follows logically

from P if q is true in any possible model where all of the propositions in P are true.

In symbol, we write P |= q and read P logically entails q. This concept is the basis

for inference rules that we can use to write proofs (item 3 on our list).

• Some important inference rules.

p∧q
p

(and-elimination) p∧q
q

(and-elimination)
p

p∨q
(or-introduction) q

p∨q
(or-introduction)

p, q
p∧q

(and-introduction) p, q
q∧p

(and-introduction)
p∨q, ¬p

q
(or-elimination) p∨q, ¬q

p
(or-elimination)

p =⇒ q, p
q

(modus ponens) p =⇒ q, ¬q
¬p

(modus tollens)
p =⇒ q, q =⇒ r

p =⇒ r
(transitivity)

One way to prove an inference rule is to use logical equivalences. Another way is

to inspect the truth tables and use the definition of logical entailment. (Note: do

some example proofs here.)
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• Two inference meta-rules not included in the above table are

∅ |= True

and

{p} |= q

whenever p is logically equivalent to q.

• Almost all proofs in mathematics we are likely to encounter are actually informal

proofs. Such a proof presumes an intended audience. An informal proof usually

skips many little steps and the readers are assumed to be able to fill out the details.

• For this class we will not develop all the mathematics we need from scratch. We

assume an axiom system powerful enough to include arithmetic on the real numbers.

This means you may use facts you have learned up to the materials typically covered

in a precalculus course without proving them.
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• Proving an Existentially Quantified Statement ∃x.ϕ(x). This is straightfor-

ward. We simply pick an element x from our universe of discourse (perhaps after

a long period of pondering), and then show that ϕ(x) is true. Let’s look at an

example.

Theorem. Some prime number is even.

Proof. Consider the number 2. We have 2 = 2 · 1 and 1 is an integer. Hence, 2 is

even by the definition of evenness. Moreover, the only divisors of 2 are 1 and 2.

Therefore, 2 is a prime by the definition of prime. Thus, 2 is both a prime number

and even.

• Proving a Universally Quantified Statement ∀x.ϕ(x). We begin by saying,

“Let x be any arbitrary element from our universe of discourse,” and then proceed

to show that ϕ(x) is true. Our proof will be valid as long as we do not use any

properties except those that are known to hold for every element in our universe of

discourse. Let’s look at an example.

Theorem. Every natural number is smaller than some natural number.

Proof. Let n be any natural number. It is an arithmetic fact that n+1 is a natural

number and that n < n+ 1.

We have shown that for any natural number n there exists a number, specifically

the natural number n+ 1, such that n is smaller than it.

Thus, every natural number is smaller than some natural number.

In the formal language, this theorem says ∀n∃m(n < m). That is, it is of the

form ∀n.ϕ(n) where ϕ(n) is ∃m.ψn(m), i.e., ψn(m) depends on n. The order of

quantifiers is important. That’s why we pick an arbitrary number n first, and then

judiciously pick another number m that is greater than that specific n second.
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• Proving an Implication. An implication is the most important type of proposi-

tion we will be dealing with. Suppose we have to show that p =⇒ q is true in our

axiom system. This means we want to prove that in any model where our axioms

and p hold, q also holds. There are three proof methods we can use: direct proof,

proof by contrapositive, and proof by contradiction.

In a direct proof, we assume that the hypothesis p is true in addition to the axioms.

We then write a series of valid statements (axioms, tautologies, statements using

inference rules) having the conclusion q as the last statement.

The proof by contrapositive is based on the fact that an implication is logically

equivalent to its contrapositive, i.e.,

(p =⇒ q) ≡ (¬q =⇒ ¬p).

It is the direct proof of the contrapositive.

We will describe the proof by contradiction later.

• Direct Proof of a Universally Quantified Implication ∀x(ϕ(x) =⇒ ψ(x)).

Theorem. For every integer n, if n is even then n2 is even.

Proof. Let n be an even integer. By definition of even integer, n = 2k for some

integer k. By the rule of arithmetic, we have n2 = (2k)2 = 2k2k = 2(k2k). Since k is

an integer and 2 is an integer, and the set of integers is closed under multiplication,

we have that k2k is an integer. Thus, n2 is even (because it can be written as 2

times the integer k2k).

• Proof by Contrapositive of a Universally Quantified Implication ∀x(ϕ(x) =⇒
ψ(x)).

Theorem. For every integer n, if n2 is even then n is even.

Proof. Let n be any integer that is not even. Thus n is odd. By definition of

odd integer, n = 2k + 1 for some integer k. By the rule of arithmetic, we have

n2 = (2k + 1)2 = (2k + 1)(2k + 1) = 4k2 + 4k + 1 = 2(2k2 + 2k) + 1. Since k is

an integer and 2 is an integer, and the set of integers is closed under multiplication
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and addition, we have that 2k2 + 2k is an integer. Thus, n2 is odd (because it can

be written as twice the integer 2k2 + 2k, plus 1). Therefore, n2 is not even.

• Proof by Contradiction. This proof method is based on the fact that any

proposition p is logically equivalent to the proposition ¬p =⇒ False. So instead

of proving p, we directly prove that ¬p =⇒ False. Let’s look at an example.

Theorem.
√

2 is an irrational number.

Proof. Suppose for the sake of contradiction that
√

2 is rational. By the definition

of rational number, there exist integers n and m such that their only common

positive divisor is 1 and that
√

2 = n/m.

By the rule of arithmetic, we can then square both sides to get

2 = n2/m2

and again by the rule of arithmetic, we can then multiply both sides by m2 to get

2m2 = n2.

The above equality says that n2 is an even number by the definition of even number.

By the last theorem we proved, we conclude that n is even. So by the definition of

even integer, n = 2k for some integer k. Replacing n by 2k in the last equality we

get

2m2 = (2k)2

which gives

2m2 = 4k2.

By the rule of arithmetic, we can divide both sides by 2 to get

m2 = 2k2.

The above equality says thatm2 is an even number by the definition of even number.

By the last theorem we proved, we conclude that m is even.

We have now proved that both n and m are even integers, that is, they have 2 as

a common divisor. This contradicts our assumption that n and m have 1 as their

only common positive divisor.
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• Proof by Contradiction of a Universally Quantified Implication ∀x(ϕ(x) =⇒
ψ(x)).

By the foregoing discussion, we have to show that

¬[∀x(ϕ(x) =⇒ ψ(x))] =⇒ False

which is logically equivalent to

∃x[¬(ϕ(x) =⇒ ψ(x))] =⇒ False

which is logically equivalent to

∃x[¬(¬ϕ(x) ∨ ψ(x))] =⇒ False

which is logically equivalent to

∃x[¬¬ϕ(x) ∧ ¬ψ(x)] =⇒ False

which is logically equivalent to

∃x[ϕ(x) ∧ ¬ψ(x)] =⇒ False,

and this is the form that we will use. Let’s look at an example.

Theorem. For all integer n, if n is even then n2 is even.

Proof. Suppose there exists an even integer n such that its square n2 is odd. This

means, by definition of even and odd integers, that there exist integers k and ` such

that n = 2k and n2 = 2`+ 1. We thus have

2`+ 1 = n2 = (2k)2 = 4k2.

Subtracting 2` from both sides we get

1 = 4k2 − 2`

which further yields

1 = 2(2k2 − `)

which says that 1 is an even integer, a contradiction.
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• Proof by Cases. This proof method is based on the fact that any proposition q

is logically equivalent to the proposition (p =⇒ q) ∧ (¬p =⇒ q), where p is any

proposition. Instead of trying to prove q, we prove (p =⇒ q) ∧ (¬p =⇒ q). We

will now give an example of a beautiful proof by cases.

Theorem. There exist irrational numbers x and y such that xy is rational.

Proof. Consider the number
√

2
√

2
. It is either rational or irrational. We consider

each case in turn.

Case 1.
√

2
√

2
is rational. We then let x =

√
2 and let y =

√
2. We then have both

x and y irrational but xy rational.

Case 2.
√

2
√

2
is irrational. We then let x =

√
2
√

2
and let y =

√
2. We thus have

xy =
(√

2
√

2)√2
=
√

2
√

2·
√

2
=
√

2
2

= 2, a rational number. Again we have both x

and y irrational but xy rational.

This completes the proof.

Notice that even after the proof we still don’t know whether Case 1 above is true

or Case 2 is true. The proof helps absolutely nothing in determining the rationality

of
√

2
√

2
.
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• Exercises.

1. Prove it is not the case that for every natural number n, the number n2 +

41n+ 41 is prime.

2. Prove it is not the case that there exists a natural number m such that for

every natural number n we have m = n+ 1.

3. Prove directly that for any integers m and n, if m + n is odd then m is odd

or n is odd.

Hint: Use the fact that p ∨ q ≡ ¬p =⇒ q.

4. Prove it again by contrapositive.

5. Prove it again by contradiction.

6. Prove by contrapositive that for all integers m, n, if mn is odd then both m

and n are odd.

Hint: Use the fact that p ∨ q =⇒ r ≡ (p =⇒ r) ∧ (q =⇒ r).

7. Prove it again by contradiction.

8. Prove (by cases) that the product of any three consecutive integers is divisible

by 3.


