Chapter 1. Introduction

Definition. Let

$$
X: x=v_{0}, v_{1}, \ldots, v_{k-1}, v_{k}=y
$$

be an $x-y$ walk and let

$$
Y: y=v_{k}, v_{k+1}, \ldots, v_{k+\ell-1}, v_{k+\ell}=z
$$

be a $y-z$ walk. We say that the walk $Z=v_{0}, \ldots, v_{k}, v_{k+1}, \ldots, v_{k+\ell}$ results from concatenating Y to X.

Let X be as above and let i and j be such that $0 \leq i<j \leq k$. Then the $v_{i}-v_{j}$ walk $X^{\prime}: v_{i}, v_{i+1}, \ldots, v_{j-1}, v_{j}$ is said to be a subwalk of X. Deleting the subwalk X^{\prime} from X means "removing all edges and internal vertices of X^{\prime} from X." If $v_{i} \neq v_{j}$, then we get two distinct walks (a $v_{0}-v_{i}$ walk and a $v_{j}-v_{k}$ walk) after deletion. But if $v_{i}=v_{j}$, then we get one walk ($a v_{0}-v_{k}$ walk) after deletion.

We prove Theorem 1.6 by algorithm.
Theorem (Theorem 1.6, CZ). If a graph G contains a $u-v$ walk of length ℓ, then G contains a $u-v$ path of length at most ℓ.

Proof. Given a $u-v$ walk W in G of length ℓ, we execute the following algorithm.
1: \quad while W contains repeated vertices do \{
2: let x be some vertex that occurs (at least) twice on W
3: \quad delete an $x-x$ subwalk from W
4: \}
5: \quad return W as the desired path
We prove this algorithm correct by showing that

1. If the algorithm terminates, then it returns a $u-v$ path of length at most ℓ.
2. The algorithm terminates.

First note that W is a $u-v$ walk before and after each iteration of the while loop. Suppose the algorithm terminates. Then line 5 must have been executed, which means the while loop exits. Since the loop exits only when W contains no repeated vertices, we see that the algorithm returns a $u-v$ path. This path must have length at most ℓ since it is derived from the input walk by having some (if any) subwalk(s) deleted from it.

Each time the body of the loop executes, the length of the walk W decreases by some positive amount. Now, a walk of shortest possible length is the trivial walk of length 0 . Since the input walk has length ℓ, the while statement iterates no more than ℓ times. This means the algorithm terminates.

This completes the proof.

Definition. Let $G=(V, E)$ be a graph. A path $P: v_{0}, v_{1}, \ldots, v_{\ell-1}, v_{\ell}$ in G is called maximal if all neighbors of the ends of P are on P. In other words, if $v_{0} x$ is an edge of G then $x=v_{i}$ for some $0<i \leq \ell$, and if $v_{\ell} x$ is an edge of G then $x=v_{i}$ for some $0 \leq i<\ell$.

Exercise. Give an algorithm for getting a maximal path.
We prove Thereom 1.9 by consideration of a maximal path (instead of longest geodesic like in CZ).

Theorem (Theorem 1.9, CZ). If G is a connected graph of order 2 or more, then G contains two distinct vertices u and v such that $G-u$ is connected and $G-v$ is connected.

Proof. Let P be a maximal path in G, and let u and v be the end vertices of P. Since G is connected and nontrivial, G has no isolated vertex. Thus, none of G 's maximal paths is trivial. Therefore, $u \neq v$.

First we'll prove that $G-u$ is connected. Let x and y be any vertices in $G-u$. Since G is connnected, G contains an $x-y$ path, say Q. We consider two possibilities.

Case 1: u is not on Q. Then Q is an $x-y$ path in $G-u$ as well. Thus, $x \sim y$ in $G-u$.
Case 2: u is on Q. Then u appears on Q exactly once since Q is a path. Say that $Q: x=w_{0}, w_{1}, \ldots, w_{i}, w_{i+1}=u, w_{i+2}, \ldots, w_{k}=y$. Since P is a maximal path with u as one of its end vertices, all neighbors of u is on P. This means that P contains a $w_{i}-w_{i+2}$ subpath P^{\prime}. Now let Q^{\prime} be the result of replacing the subpath w_{i}, u, w_{i+2} on Q by P^{\prime}.

Then Q^{\prime} is an $x-y$ walk in $G-u$. By Thereom 1.6, Q^{\prime} contains an $x-y$ path (in $G-u$). Thus, $x \sim y$ in $G-u$.

In both cases, we have shown that $x \sim y$ in $G-u$. Thus, $G-u$ is connected.
That $G-v$ is connected can be proved in a similar way.

