Chapter 2

The proof of Theorem 2.4 in CZ has a gap, which we'll fill up here.
Theorem (CZ Theorem 2.4). Let G be a graph of order n. If $\operatorname{deg} u+\operatorname{deg} v \geq n-1$ for every two nonadjacent vertices u and v of G, then G is connected and $\operatorname{diam}(G) \leq 2$.

Proof. Let G be a graph satisfying the hypothesis. Choose any two vertices u, v. If u is adjacent to v, then $\langle u, v\rangle$ is a $u-v$ path of length 1 . If u is not adjacent to v, then $|N(u) \cup N(v)| \leq n-2$, which implies

$$
-|N(u) \cup N(v)| \geq 2-n .
$$

By assumption

$$
|N(u)|+|N(v)| \geq n-1 .
$$

Therefore,

$$
\begin{aligned}
|N(u) \cap N(v)| & =|N(u)|+|N(v)|-|N(u) \cup N(v)| \\
& \geq(n-1)+(2-n) \\
& =1 .
\end{aligned}
$$

This says that u and v have some common neighbor. Let w be a common neighbor. Then $\langle u, w, v\rangle$ is a $u-v$ path of length 2.

Therefore, between any two distinct vertices in G there's a path of length 1 or 2 connecting them. In other words, G is connected and $\operatorname{diam}(G) \leq 2$.

Definition Let G be a graph. The degrees of its vertices listed (in any order) as a sequence of integers is called a degree sequence of G.

A sequence s of integers is called graphical if there exists some graph having s as its degree sequence.

Let G be a graph containing distinct vertices v, w, x, y, and containing edges $v w$ and $x y$, but not containing edges $w x$ or $v y$. Let $G^{\prime}=G-\{v w, x y\}+w x+v y$. We say that G^{\prime} is obtained from G by performing a 2 -switch. Note that graphs G and G^{\prime} have exactly the same degree sequence(s).

Lemma. Let $s: d_{1}, d_{2}, \ldots, d_{n}$ be a sequence of integers. The followings are true.
(i) For any s^{\prime} where s^{\prime} is a permutation of s, the sequence s is graphical if and only if s^{\prime} is.
(ii) If $d_{i}=0$ for all $1 \leq i \leq n$, then s is graphical.
(iii) If $d_{i}<0$ or $d_{i} \geq n$ for some $1 \leq i \leq n$, then s is not graphical.

Proof. (i) holds because the definition of degree sequence allows arbitrary ordering of the vertices when recording the degrees.
(ii) holds because s is the degree sequence of the empty graph of order n.
(iii) holds because every vertex v in a graph of order n satisfies $0 \leq \operatorname{deg} v \leq n-1$.

The next theorem was proved in CZ by contradiction. We do it directly by algorithm.
Theorem (CZ Theorem 2.10). Let n be a positive integer ≥ 2. Let s be a non-increasing sequence

$$
d_{1}, d_{2}, \ldots, d_{n}
$$

of nonnegative integers such that $d_{1}<n$.. Let t be the sequence that results from s by removing d_{1} and subtracting 1 from the next d_{1} numbers in s. That is, t is the sequence

$$
d_{2}-1, d_{3}-1, \ldots, d_{d_{1}+1}-1, d_{d_{1}+2}, \ldots, d_{n}
$$

Then s is graphical if and only if t is graphical.
Proof. First assume t is graphical. Let H be a graph having t as its degree sequence. Name the vertices of H using integers $2,3, \ldots, n$ so that $\operatorname{deg} i=d_{i}$ for all $2 \leq i \leq n$. Let G be the graph obtained from H by adding vertex 1 , and adding edges joining 1 to j for all $2 \leq j \leq d_{1}+1$ (for a total of d_{1} edges). We see that G has s as its degree sequence. Thus, s is graphical.

Next assume s is graphical. Let G have s as its degree sequence. Let W be the set of d_{1} consecutive integers $\left\{2,3, \ldots, d_{1}, d_{1}+1\right\}$. Name the vertices of G using integers $1,2,3, \ldots, n$ so that (i) $\operatorname{deg} i=d_{i}$ for all $1 \leq i \leq n$, and (ii) $|N(1) \cap W|$ is maximized (over all possible ways of naming the vertices using $1,2,3, \ldots, n$). From G we will create
a graph G^{*} such that (i) G^{*} has exactly the same degreee sequences as G, and (ii) $N(1)=$ W.

If $N(1)=W$, let $G^{*}:=G$. So assume from now on that $N(1) \neq W$. Let $w \in W$ be any non-neighbor of 1 , and let $x \notin W$ be any neighbor of 1 . Since s is non-increasing, $d_{w} \geq d_{x}$. Now d_{w} cannot be equal to d_{x} because our choice of vertex naming maximizes $|N(1) \cap W|$. Therefore, $d_{w}>d_{x}$, which means there exists some vertex y that is a neighbor of w but not a neighbor of x. We now have vertices $1, w, x, y$ such that $1 x$ and $w y$ are edges of G but $1 w, x y$ are not edges. Performing a 2 -switch on these four vertices results in a graph G^{\prime} with the same degree sequences as G. However, the quantity $|N(1) \cap W|$ in G^{\prime} is one more than the same quantity in G. If now $N(1)=W$ in G^{\prime}, we let $G^{*}:=G^{\prime}$. If not, we repeat this same reasoning and operation to change G^{\prime} to another graph having $|N(1) \cap W|$ one more than G^{\prime} has. We have to repeat this process no more than d_{1} times until $N(1)=W$, and we call this last graph obtained this way G^{*}. Let $H=G^{*}-1$. Then H has t as its degree sequence; thus, t is graphical.

