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Chapter 4. Bridges and Trees

Definition 1. An edge e in a connected graph G is a bridge if G − e is disconnected.

An edge e in a disconnected graph G is a bridge if G′− e is disconnected, where G′ is the

connected component of G that contains e.

Definition 2. An edge e in a graph G is a bridge if G−e has more connected components

than G.

Exercise. Prove that these two definitions are equivalent.

Theorem (CZ, Theorem 4.1). An edge e of a graph G is a bridge if and only if e lies on

no cycle of G.

Proof. . . . prove each implication by contrapositive . . .

Lemma (Bridge Lemma). If e = uv is a bridge in a connected graph G, then G− e has

exactly 2 connected components, one containing u and the other containing v.

Proof. . . . first show u and v are in different components in G − e, then show for any

x ∈ V (G − e) either x belongs to the component containing u, or x belongs to the

component containing v . . .

Definitions. An acyclic graph contains no cycle. A forest is an acyclic graph. A tree is

a connected forest.

Lemma. Let G be a graph. There exist vertices u and v in G with more than one u− v

path if and only if G contains some cycle.

Proof. . . . The “if” part is straightforward. For the “only if” part, let P , Q be 2 u − v

paths. Let H be the subgraph of G induced by the edges of P and Q. Show some edge e

of P is not on Q. Pick e to be the first such edge encountered while walking along P

from u to v. Now show H−e is connected, then conclude H has some cycle containing e.

. . .
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Theorem (CZ, Theorem 4.2). A graph G is a tree if and only if every two vertices of G

are connected by a unique path.

Proof. “G is not a tree” iff “G is not connected or G contains some cycle” iff “there

exist two vertices in G that are not connected or there exist two vertices in G that are

connected by more than 1 path” iff “there exist two vertices in G that are not connected

or connected by more than 1 path” iff “there exist two vertices in G that are not connected

by a unique path.”

Theorem (CZ, Theorem 4.4). Every tree of order n has size n− 1.

Proof. See Handout #A5 on Induction.

Exercise 4.8 (CZ, p.92). Prove that if every vertex of a graph G has degree at least 2,

then G contains a cycle.

Proof. By direct proof (algorithm), or by contrapositive, or by contradiction, or by in-

duction.

Theorem (CZ, Theorem 4.3). Every nontrivial tree has at least two end vertices.

Proof. (First Proof) Suppose T is a nontrivial tree with at most one end vertex, i.e.,

either T has no end vertex or it has exactly one end vertex. Since T is a nontrivial tree,

none of its vertices is isolated. Therefore, if T has no end vertex, then every vertex has

degree at least 2. Exercise 4.8 shows that T must contain some cycle. This contradicts

the fact that T is a tree, and so acyclic. Thus, T has exactly one end vertex; let’s call

it x. By Theorem 4.4, Theorem 2.1, and the fact that T has one end vertex and no

isolated vertex, we see that

2(n− 1) = 2m

=
∑

v∈V (T )

deg v

= deg x +
∑

v∈V (T )\{x}

deg v

≥ 1 + 2(n− 1)

which implies 0 ≥ 1, a contradiction.



MCS-236: Handout #Ch4 3

(Second Proof) Let P : u0, u1, . . . , uk−1, uk be a maximal path in T . Since T is nontrivial,

the length of P is at least one. Thus u0 6= uk. We will show that both u0 and uk are end

vertices. Consider u0. All of its neighbors are on P because u0 is an end vertex of the

maximal path P . We know u1 is a neighbor of u0. In fact, it is the only neighbor. This

is because if uj(j > 1) were some other neighbor of u0, then u0, u1, . . . , uj−1, uj, u0 would

be a cycle in T , which is impossible since T is a tree so it has no cycle. Therefore, u0 is

an end vertex as desired.

That uk is an end vertex can be proved in a similar way.

Corollary (CZ, Corrolary 4.6). Every forest of order n with k components has size n−k.

Proof. . . .

Definitions. Recall that a graph H is a spanning subgraph of a graph G if H is a

subgraph of G and V (H) = V (G). If T is a subgraph of G and T is a tree, we say that

T is a spanning tree of G.

Theorem (CZ, Theorem 4.10). Every connected graph contains a spanning tree.

Proof. Let G be a connected graph. Let T be a subgraph of G obtained from executing

the following procedure.

0: T ← G

1: while T contains some cycle C do {
2: let e be an edge on the cycle C

3: T ← T − e

4: }
5: return T

We claim

1. the procedure terminates, and

2. T is a connected subgraph of G throughout the procedure.

We first prove claim 1. The graph G has a finite number m of edges. The while loop

iterates by deleting an edge from the current graph as long as it contains some cycle.
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The empty graph on V (G) is the minimal subgraph of G and it is acyclic. So the loop

cannot iterate more than m times. Thus, our procedure terminates.

We now prove claim 2. T is a connected subgraph of G right after Line 0 is executed

because the input graph G is assumed to be connected and Line 0 simply assigns G to T .

We now show that the loop maintains connectedness of T . So suppose that T is connected

before Line 1 is executed and suppose the while condition of Line 1 is true. Line 2 then

picks an edge e belonging to a cycle and Line 3 deletes e from T . By Theorem 4.1, edge e

is not a bridge; so deleting it from T still leaves T connected.

By claim 1, the procedure terminates. Now, it terminates only when the condition in

Line 1 is false, i.e., when the current graph T contains no cycle. Thus, Lines 5 returns a

subgraph T of G that is both connected and acyclic. Thus, T is a spanning tree of G.

Theorem (CZ, Theorem 4.7). The size of every connected graph of order n is at least n−
1.

Proof. Let G be a connected graph of order n. By Theorem 4.10, let T be a spanning

tree of G. The size of T is n − 1 because (i) the order of G is n, and (ii) T spans G,

and (iii) Theorem 4.4. Since T is a subgraph of G, the size of G is at least the size of T .

Therefore, the size of G is at least n− 1.

Theorem (CZ, Theorem 4.8). Let G be a graph of order n and size m. If G satisfies

any two of the properties:

1. G is connected,

2. G is acyclic,

3. m = n− 1,

then G satisfies all three properties.

Proof. . . .

Theorem (CZ, Theorem 4.9). Let T be a tree of order k. If G is a graph with δ(G) ≥
k − 1, then T is isomorphic to some subgraph of G.

Proof. . . .


