Connectivity

5.1 Cut Vertices

Definition 1. A vertex v in a connected graph G is a cut vertex if $G-v$ is disconnected.
Definition 2. A vertex v in a graph G is a cut vertex if $G-v$ has more connected components than G.

Exercise. Prove that these two definitions are equivalent.
Lemma (End-Vertex Lemma). If v is an end vertex in a graph G, then v is not a cut vertex of G.

Proof. Let v belong to the connected component H of G. Grow a maximal path P starting from v. Since $\operatorname{deg} v=1$, vertex v is one of the two ends of P. By the Maximal Path Theorem, $H-v$ is connected. Thus v is not a cut vertex.

Theorem (CZ, Theorem 5.1). Let G be a graph containing a bridge e incident with vertex v. Vertex v is a cut vertex if and only if $\operatorname{deg} v \geq 2$.

Proof. Let G be a graph containing a bridge e incident with vertex v.
\Rightarrow : Suppose $\operatorname{deg} v<2$. Since e is incident with v, we have $\operatorname{deg} v \geq 1$. Thus, $\operatorname{deg} v=1$. By the End-Vertex Lemma, v is not a cut vertex.
\Leftarrow : Suppose $\operatorname{deg} v \geq 2$ but v is not a cut vertex. Let bridge e join v to w and let H be the connected component of G that contains v. Since $\operatorname{deg} v \geq 2$, vertex v is adjacent to some vertex x that is different from v or w. Therefore, in H, vertex w is connected to vertex x via the path $P: w, v, x$. This says that vertices v, w, and x are all in the same component H. By assumption, vertex v is not a cut vertex of G; thus v is not a cut vertex of H, i.e., $H-v$ is connected. This says that all vertices in $H-v$ are in the same component. Hence, vertex w is connected in $H-v$ to vertex x via some path Q. Concatenating P to Q gives a cycle in H. This cycle contains edge e, contradicting the fact that e is a bridge.

Corollary (CZ, Corollary 5.2). Let G be a connected graph of order 3 or more. If G contains a bridge, then G contains a cut-vertex.

Proof. Let G be a connected graph of order at least 3 and let $e=v w$ be a bridge in G. By the Bridge Lemma, $G-e$ consists of two components: component G_{v} containing v and component G_{w} containing w. Since G has at least 3 vertices, at least one of G_{v} and G_{w} has more than one vertex. Assume wlog that G_{v} has more than one vertex. Thus, $\operatorname{deg}_{G_{v}} v \geq 1$. Since v is adjacent in G to w but w is not in G_{v}, we conclude that $\operatorname{deg}_{G} v \geq 2$. By Theorem $5.1 v$ is a cut vertex (in G).

Theorem (CZ, Corollary 5.4). A vertex v of a connected graph G is a cut vertex of G if and only if there exist vertices u and w distinct from v such that v lies on every $u-w$ path in G.

Proof. Suppose v is a cut vertex of a connected graph G. Then $G-v$ is disconnected, i.e., it has at least 2 connected components. Let u be any vertex in $G-v$ and let w be any other vertex in $G-v$ belonging to some component different from u 's. Since G is connected, there exist some $u-w$ path in G. However, there exist no $u-w$ path in $G-v$ because u and w come from different components of $G-v$. This implies that each $u-w$ path in G passes through v, since $G-v$ differs from G only in that $G-v$ misses vertex v and all edges incident to v.

Conversely, suppose v is any vertex in a connected graph G and G contains some vertices u, w such that v lies on every $u-w$ path in G. This assumption implies that any $u-w$ path in G can no longer be a $u-w$ path when vertex v and all its incident edges are deleted from G. Thus, $G-v$ is disconnected since it has vertices u and w that are not connected. Hence, v is a cut vertex of G.

Theorem (CZ, Corollary 5.6). Every nontrivial connected graph contains at least two vertices that are not cut vertices.

Proof. This is just Theorem 1.9 (with the phrase "connected graph of order 3 or more" changed to "connected nontrivial graph") restated in terms of cut vertices. See Handout \#5.

5.2 Blocks

Definition. A nonseparable graph is nontrivial, connected, and has no cut vertex.
Note: K_{2} is the only nonseparable graph of order less than 3 .
Theorem (CZ, Theorem 5.7). A graph of order at least 3 is nonseparable if and only if every two vertices lie on a common cycle.

Proof. Let G be a graph of order at least 3 .
Suppose every two vertices of G lie on a common cycle. Graph G is nontrivial since its order is at least 3. Let x, y be two vertices of G. By assumption there is a cycle C that contains both x and y. Thus there is an $x-y$ path along C. Hence G is connected. Fix a vertex v. Let u, w be any two vertices distinct from v. By assumption there is a cycle that contains both u and w. This cycle gives two internally disjoint $u-w$ paths, at least one of which does not go through v. Hence, v is not a cut vertex by Corollary 5.4. Thus, graph G contains no cut vertex. Therefore, G is nonseparable.
Conversely, suppose G is nonseparable. Let u be a vertex of G. We will prove that if v is any vertex of G distinct from u, then there is a cycle that goes through both u and v, by induction on the distance $d(u, v)$. First suppose that $d(u, v)=1$, i.e., G has an edge e joining u to v. Since G has order at least 3 and it contains no cut vertex (because G is nonseparable), we conclude by Corollary 5.2 that G contains no bridge. Therefore, e is not a bridge; and thus some cycle C contains e. Hence, cycle C contains both u and v (since e joins u to v). Next suppose that $d(u, v)=k>1$ and assume inductively that for any vertex x, where $0<d(u, x)<k$, there exists some cycle that goes through both u and x. Let $P: u=v_{0}, v_{1}, \ldots, v_{k-1}, v_{k}=v$ be a $u-v$ geodesic. Since $0<d\left(u, v_{k-1}\right)=k-1<k$, there exists, by inductive assumption, a cycle C that passes through both u and v_{k-1}. If cycle C goes through v_{k} as well, then we are done. So assume from now on that C does not go through v_{k}. Since G contains no cut vertex, v_{k-1} is not a cut vertex. This means that there exists some path in $G-v_{k-1}$ (and in G as well) connecting v_{k} to some vertex $x \in V(C) \backslash v_{k-1}$. Let Q be such a path of shortest possible length. Appending the $x-v_{k-1}$ path in C that goes through u (this path is unique if $x \neq u$) to Q gives a $v-v_{k-1}$ path P^{\prime} in G that goes through u. Path P^{\prime} together with edge $v_{k-1} v_{k}$ gives a cycle in G that goes through both u and v. Our claim follows by induction.

Definition. Let G be a graph of positive size. Define a relation R on $E(G)$ as follows. For any edges e and f, declare $e R f$ iff $e=f$ or there is a cycle in G that contains both e and f.

Theorem (CZ, Theorem 5.8). The relation R is an equivalence relation.
Proof. ...
Definition 1. A block of G is a nonseparable subgraph of G that is not a proper subgraph of any other nonseparable subgraph of G.
Definition 2. A block of G is a subgraph of G induced by the edges in an equivalence class defined by the relation R defined above.

Theorem (CZ, Exercise 5.15). The two definitions of block are equivalent.
Proof. ...
Corollary (CZ, Corollary 5.9). Every two distinct blocks B_{1} and B_{2} in a nontrivial connected graph G have the following properties:
(a) The blocks B_{1} and B_{2} are edge-disjoint.
(b) The blocks B_{1} and B_{2} have at most one vertex in common.
(c) If B_{1} and B_{2} have a vertex v in common, then v is a cut vertex of G.

Proof. (a) By definition 2 of block, the edges $E\left(B_{1}\right)$ of block B_{1} and the edges $E\left(B_{2}\right)$ of block B_{2} belong to different equivalence classes. Therefore, $E\left(B_{1}\right) \cap E\left(B_{2}\right)=\emptyset$.
(b) Assume for the sake of contradiction that $\left|V\left(B_{1}\right) \cap V\left(B_{2}\right)\right| \geq 2$. Since B_{1} is connected (because it's a block), for any two vertices shared by the two blocks there exists a path in B_{1} connecting them. Let P_{1} be a shortest path in B_{1} connecting any two shared vertices; say that P_{1} connects v to w. Path P_{1} is nontrivial since $v \neq w$. Since B_{2} is connected (because it's a block), there exists a path P_{2} in B_{2} connecting v to w. Path P_{2} is nontrivial since $v \neq w$. Concatenating P_{1} to P_{2} gives a cycle containing some edge e_{1} in B_{1} and some edge e_{2} in B_{2}. Thus, e_{1} and e_{2} belong to the same block by definition 2 of block. This contradicts part (a).
(c) Let $v \in V\left(B_{1}\right) \cap V\left(B_{2}\right)$. Being a block, B_{1} is connected and nontrivial; thus, there exists $u_{1} \in V\left(B_{1}\right)$ adjacent to v. Being a block, B_{2} is connected and nontrivial; thus, there exists $u_{2} \in V\left(B_{2}\right)$ adjacent to v.

We'll show that every $u_{1}-u_{2}$ path in G contains v. Assume for the sake of contradiction that there is some $u_{1}-u_{2}$ path P in G not containing v. Path P together with v and edges $u_{1} v$ and $v u_{2}$ give a cycle C containing both $u_{1} v$ and $v u_{2}$. Hence, edges $u_{1} v$ and $v u_{2}$ belong to the same equivalence class, i.e., same block. This contradicts part (a). Therefore, v is a cut vertex of G.

5.3 Connectivity

Definitions. Let $G=(V, E)$ be a connected graph. A subset U of V is called a vertex cut if $G-U$ is disconnected. A minimum vertex cut of G is a vertex cut of least cardinality. The (vertex) connectivity $\kappa(G)$ of G is defined as follows: for a disconnected graph G, $\kappa(G)=0$; for a connected graph $G, \kappa(G)$ equals the cardinality of a smallest vertex subset U such that $G-U$ is either disconnected or trivial. A graph G is k-connected if $\kappa(G) \geq k$. Note that any graph G satisfies $0 \leq \kappa(G) \leq n-1$. Note also that for a connected graph G of order $n, \kappa(G)=n-1$ if and only if $G \cong K_{n}$.

Let $G=(V, E)$ be a connected graph. A subset X of E is an edge cut if $G-X$ is disconnected. An edge cut X is minimal if no proper subset of X is an edge cut. A minimum edge cut is an edge cut of minimum size.

Note that a minimal edge cut is not necessarily minimum, but every minimum edge cut is necessarily minimal. (Prove!)

The following lemma characterizes minimal edge cuts.
Lemma (Minimal Edge Cut Lemma). If X is a minimal edge cut of a connected graph G, then $G-X$ contains exactly 2 components. Moreover, X consists of all the edges of G that join a vertex in one component to a vertex in another component.

Proof. Assume G is a connected graph and X is a minimal edge cut of G. Choose any edge $e \in X$, say e joins u to v. We have $G-X$ is disconnected but $G-(X \backslash\{e\})$ is connected. This means that e is a bridge in $G-(X \backslash\{e\})$. By the Bridge Lemma, $G-(X \backslash\{e\})-e$ consists of exactly two components, one containing u and the other containing v. Since $G-(X \backslash\{e\})-e=G-X$, we conclude that $G-X$ consists of exactly two components, say G_{1} and G_{2}, and every edge of X joins a vertex in G_{1} to a vertex in G_{2}.

Let e be any edge in G joining a vertex in G_{1} to a vertex in G_{2}. We'll show that $e \in X$. Suppose not. Then $G-X$ contains edge e. This contradicts G_{1} and G_{2} being distinct components in $G-X$.

The edge connectivity $\lambda(G)$ of G is defined as follows: for a disconnected graph G, $\lambda(G)=0$; for a connected graph $G, \lambda(G)$ equals the cardinality of a smallest edge subset X such that $G-X$ is either disconnected or trivial. A graph G is k-edge-connected if $\lambda(G) \geq k$. Note that any graph G satisfies $0 \leq \lambda(G) \leq n-1$.

CZ, Example 5.10 Show that $\lambda\left(K_{n}\right)=n-1$.
Proof. ...
Theorem (CZ, Theorem 5.11). For any graph G,

$$
\kappa(G) \leq \lambda(G) \leq \delta(G)
$$

Proof. ...

