Connectivity

5.1 Cut Vertices

Definition 1. A vertex v in a connected graph G is a *cut vertex* if G - v is disconnected. **Definition 2.** A vertex v in a graph G is a *cut vertex* if G - v has more connected components than G.

Exercise. Prove that these two definitions are equivalent.

Lemma (End-Vertex Lemma). If v is an end vertex in a graph G, then v is not a cut vertex of G.

Proof. Let v belong to the connected component H of G. Grow a maximal path P starting from v. Since deg v = 1, vertex v is one of the two ends of P. By the Maximal Path Theorem, H - v is connected. Thus v is not a cut vertex.

Theorem (CZ, Theorem 5.1). Let G be a graph containing a bridge e incident with vertex v. Vertex v is a cut vertex if and only if deg $v \ge 2$.

Proof. Let G be a graph containing a bridge e incident with vertex v.

 \Rightarrow : Suppose deg v < 2. Since e is incident with v, we have deg $v \ge 1$. Thus, deg v = 1. By the End-Vertex Lemma, v is not a cut vertex.

⇐: Suppose deg $v \ge 2$ but v is not a cut vertex. Let bridge e join v to w and let H be the connected component of G that contains v. Since deg $v \ge 2$, vertex v is adjacent to some vertex x that is different from v or w. Therefore, in H, vertex w is connected to vertex x via the path P : w, v, x. This says that vertices v, w, and x are all in the same component H. By assumption, vertex v is not a cut vertex of G; thus v is not a cut vertex of H, i.e., H - v is connected. This says that all vertices in H - v are in the same component. Hence, vertex w is connected in H - v to vertex x via some path Q. Concatenating P to Q gives a cycle in H. This cycle contains edge e, contradicting the fact that e is a bridge. **Corollary** (CZ, Corollary 5.2). Let G be a connected graph of order 3 or more. If G contains a bridge, then G contains a cut-vertex.

Proof. Let G be a connected graph of order at least 3 and let e = vw be a bridge in G. By the Bridge Lemma, G - e consists of two components: component G_v containing vand component G_w containing w. Since G has at least 3 vertices, at least one of G_v and G_w has more than one vertex. Assume wlog that G_v has more than one vertex. Thus, $\deg_{G_v} v \ge 1$. Since v is adjacent in G to w but w is not in G_v , we conclude that $\deg_G v \ge 2$. By Theorem 5.1 v is a cut vertex (in G).

Theorem (CZ, Corollary 5.4). A vertex v of a connected graph G is a cut vertex of G if and only if there exist vertices u and w distinct from v such that v lies on every u - wpath in G.

Proof. Suppose v is a cut vertex of a connected graph G. Then G - v is disconnected, i.e., it has at least 2 connected components. Let u be any vertex in G - v and let w be any other vertex in G - v belonging to some component different from u's. Since G is connected, there exist some u - w path in G. However, there exist no u - w path in G - v because u and w come from different components of G - v. This implies that each u - w path in G passes through v, since G - v differs from G only in that G - v misses vertex v and all edges incident to v.

Conversely, suppose v is any vertex in a connected graph G and G contains some vertices u, w such that v lies on every u - w path in G. This assumption implies that any u - w path in G can no longer be a u - w path when vertex v and all its incident edges are deleted from G. Thus, G - v is disconnected since it has vertices u and w that are not connected. Hence, v is a cut vertex of G.

Theorem (CZ, Corollary 5.6). Every nontrivial connected graph contains at least two vertices that are not cut vertices.

Proof. This is just Theorem 1.9 (with the phrase "connected graph of order 3 or more" changed to "connected nontrivial graph") restated in terms of cut vertices. See Handout #5.

5.2 Blocks

Definition. A nonseparable graph is nontrivial, connected, and has no cut vertex.

Note: K_2 is the only nonseparable graph of order less than 3.

Theorem (CZ, Theorem 5.7). A graph of order at least 3 is nonseparable if and only if every two vertices lie on a common cycle.

Proof. Let G be a graph of order at least 3.

Suppose every two vertices of G lie on a common cycle. Graph G is nontrivial since its order is at least 3. Let x, y be two vertices of G. By assumption there is a cycle C that contains both x and y. Thus there is an x - y path along C. Hence G is connected. Fix a vertex v. Let u, w be any two vertices distinct from v. By assumption there is a cycle that contains both u and w. This cycle gives two internally disjoint u - w paths, at least one of which does not go through v. Hence, v is not a cut vertex by Corollary 5.4. Thus, graph G contains no cut vertex. Therefore, G is nonseparable.

Conversely, suppose G is nonseparable. Let u be a vertex of G. We will prove that if v is any vertex of G distinct from u, then there is a cycle that goes through both u and v, by induction on the distance d(u, v). First suppose that d(u, v) = 1, i.e., G has an edge e joining u to v. Since G has order at least 3 and it contains no cut vertex (because G is nonseparable), we conclude by Corollary 5.2 that G contains no bridge. Therefore, e is not a bridge; and thus some cycle C contains e. Hence, cycle C contains both u and v (since e joins u to v). Next suppose that d(u, v) = k > 1 and assume inductively that for any vertex x, where 0 < d(u, x) < k, there exists some cycle that goes through both u and x. Let $P : u = v_0, v_1, \ldots, v_{k-1}, v_k = v$ be a u - v geodesic. Since $0 < d(u, v_{k-1}) = k - 1 < k$, there exists, by inductive assumption, a cycle C that passes through both u and v_{k-1} . If cycle C goes through v_k as well, then we are done. So assume from now on that C does not go through v_k . Since G contains no cut vertex, v_{k-1} is not a cut vertex. This means that there exists some path in $G - v_{k-1}$ (and in G as well) connecting v_k to some vertex $x \in V(C) \setminus v_{k-1}$. Let Q be such a path of shortest possible length. Appending the $x - v_{k-1}$ path in C that goes through u (this path is unique if $x \neq u$) to Q gives a $v - v_{k-1}$ path P' in G that goes through u. Path P' together with edge $v_{k-1}v_k$ gives a cycle in G that goes through both u and v. Our claim follows by induction.

Definition. Let G be a graph of positive size. Define a relation R on E(G) as follows. For any edges e and f, declare eRf iff e = f or there is a cycle in G that contains both e and f.

Theorem (CZ, Theorem 5.8). The relation R is an equivalence relation.

Proof. ...

Definition 1. A *block* of G is a nonseparable subgraph of G that is not a proper subgraph of any other nonseparable subgraph of G.

Definition 2. A *block* of G is a subgraph of G induced by the edges in an equivalence class defined by the relation R defined above.

Theorem (CZ, Exercise 5.15). The two definitions of block are equivalent.

Proof. . . .

Corollary (CZ, Corollary 5.9). Every two distinct blocks B_1 and B_2 in a nontrivial connected graph G have the following properties:

(a) The blocks B_1 and B_2 are edge-disjoint.

(b) The blocks B_1 and B_2 have at most one vertex in common.

(c) If B_1 and B_2 have a vertex v in common, then v is a cut vertex of G.

Proof. (a) By definition 2 of block, the edges $E(B_1)$ of block B_1 and the edges $E(B_2)$ of block B_2 belong to different equivalence classes. Therefore, $E(B_1) \cap E(B_2) = \emptyset$.

(b) Assume for the sake of contradiction that $|V(B_1) \cap V(B_2)| \ge 2$. Since B_1 is connected (because it's a block), for any two vertices shared by the two blocks there exists a path in B_1 connecting them. Let P_1 be a shortest path in B_1 connecting any two shared vertices; say that P_1 connects v to w. Path P_1 is nontrivial since $v \ne w$. Since B_2 is connected (because it's a block), there exists a path P_2 in B_2 connecting v to w. Path P_2 is nontrivial since $v \ne w$. Concatenating P_1 to P_2 gives a cycle containing some edge e_1 in B_1 and some edge e_2 in B_2 . Thus, e_1 and e_2 belong to the same block by definition 2 of block. This contradicts part (a).

(c) Let $v \in V(B_1) \cap V(B_2)$. Being a block, B_1 is connected and nontrivial; thus, there exists $u_1 \in V(B_1)$ adjacent to v. Being a block, B_2 is connected and nontrivial; thus, there exists $u_2 \in V(B_2)$ adjacent to v.

We'll show that every $u_1 - u_2$ path in G contains v. Assume for the sake of contradiction that there is some $u_1 - u_2$ path P in G not containing v. Path P together with v and edges u_1v and vu_2 give a cycle C containing both u_1v and vu_2 . Hence, edges u_1v and vu_2 belong to the same equivalence class, i.e., same block. This contradicts part (a). Therefore, v is a cut vertex of G.

5.3 Connectivity

Definitions. Let G = (V, E) be a connected graph. A subset U of V is called a *vertex cut* if G - U is disconnected. A *minimum vertex cut* of G is a vertex cut of least cardinality. The *(vertex) connectivity* $\kappa(G)$ of G is defined as follows: for a disconnected graph G, $\kappa(G) = 0$; for a connected graph G, $\kappa(G)$ equals the cardinality of a smallest vertex subset U such that G - U is either disconnected or trivial. A graph G is k-connected if $\kappa(G) \ge k$. Note that any graph G satisfies $0 \le \kappa(G) \le n - 1$. Note also that for a connected graph G of order n, $\kappa(G) = n - 1$ if and only if $G \cong K_n$.

Let G = (V, E) be a connected graph. A subset X of E is an *edge cut* if G - X is disconnected. An edge cut X is *minimal* if no proper subset of X is an edge cut. A *minimum edge cut* is an edge cut of minimum size.

Note that a minimal edge cut is not necessarily minimum, but every minimum edge cut is necessarily minimal. (Prove!)

The following lemma characterizes minimal edge cuts.

Lemma (Minimal Edge Cut Lemma). If X is a minimal edge cut of a connected graph G, then G - X contains exactly 2 components. Moreover, X consists of all the edges of G that join a vertex in one component to a vertex in another component.

Proof. Assume G is a connected graph and X is a minimal edge cut of G. Choose any edge $e \in X$, say e joins u to v. We have G - X is disconnected but $G - (X \setminus \{e\})$ is connected. This means that e is a bridge in $G - (X \setminus \{e\})$. By the Bridge Lemma, $G - (X \setminus \{e\}) - e$ consists of exactly two components, one containing u and the other containing v. Since $G - (X \setminus \{e\}) - e = G - X$, we conclude that G - X consists of exactly two components, say G_1 and G_2 , and every edge of X joins a vertex in G_1 to a vertex in G_2 . Let e be any edge in G joining a vertex in G_1 to a vertex in G_2 . We'll show that $e \in X$. Suppose not. Then G - X contains edge e. This contradicts G_1 and G_2 being distinct components in G - X.

The *edge connectivity* $\lambda(G)$ of G is defined as follows: for a disconnected graph G, $\lambda(G) = 0$; for a connected graph G, $\lambda(G)$ equals the cardinality of a smallest edge subset X such that G - X is either disconnected or trivial. A graph G is k-edge-connected if $\lambda(G) \geq k$. Note that any graph G satisfies $0 \leq \lambda(G) \leq n - 1$.

CZ, Example 5.10 Show that $\lambda(K_n) = n - 1$.

Proof. ...

Theorem (CZ, Theorem 5.11). For any graph G,

$$\kappa(G) \le \lambda(G) \le \delta(G).$$

Proof. ...