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Chapter 7. Digraphs

Strong Digraphs

Definitions. A digraph is an ordered pair (V, E), where V is the set of vertices and E is

the set of arcs or directed edge. Each arc (u, v) is an ordered pair of vertices u and v. We

usually write uv for arc (u, v). For any vertices u and v, when both uv and vu are arcs

we call them antiparallel arcs. Arc uv leaves u and enters v. An arc is incident to the

vertex it leaves and the vertex it enters. The outdegree, od v, of vertex v is the number

of arcs that leave v. The indegree, id v, of vertex v is the number of arcs that enter v.

Let U and W be disjoint subsets of V . An arc uw, where u ∈ U and w ∈ W , is said to

leave U and enter W .

An oriented graph D is a digraph without antiparallel edges. In other words, it is derived

from an undirected graph G by giving a direction to every edge of G. In this case, we

say that D is an orientation of G. A directed version of an undirected graph G is a

digraph that results from G by replacing every edge of G by a pair of antiparallel arcs

joining the two ends previously joined by the replaced edge. An underlying graph of a

digraph D is the graph that results from replacing every arc or pair of antiparallel arcs by

an undirected edge. A digraph D1 = (V1, E1) is a subdigraph of a digraph D2 = (V2, E2)

if V1 ⊆ V2 and E1 ⊆ E2.

A symmetric digraph is a digraph such that if uv is an arc then vu is also an arc.

Symmetric digraphs can be modeled by undirected graphs.

Theorem (The First Theorem of Digraph Theory, Theorem 7.1 of CZ). Any digraph of

order n and size m satisfies
∑n

1 (od vi) =
∑n

1 (id vi) = m.

Proof. Each edge contributes 1 to the outdegree sum, and 1 to the indegree sum.

Definitions. The following concepts for digraphs: walk, trail, path, length of a walk,

closed walk, open walk, circuit, cycle, distance d(u, v) from u to v, geodesic, Eulerian trail,



2 MCS-236: Handout #Ch7

Eulerian circuit, Eulerian digraph, Hamiltonian path, Hamiltonian cycle, and Hamilto-

nian digraph, are defined in exactly same way as for undirected graphs. (To get the

directed definitions, subsitute everywhere the term “arc” for “edge” in the undirected

definitions.) Some digraph concepts are different from the undirected ones. For instance,

there are at least three flavors of connectedness for digraphs:

• A digraph is (weakly) connected if its underlying graph is connected.

• A digraph is semi-connected if for any vertices u, v there’s a u− v path or a v − u

path.

• A digraph is strongly connected or strong if for any vertices u, v there’s a u − v

path and a v−u path. Or equivalently, if for any vertices u, v there’s a u− v path.

Or equivalently, if there exists a vertex r such that for any vertex v there’s a r− v

path and a v − r path.

Theorem (Theorem 7.2 of CZ). If a digraph D contains a u− v walk of length `, then

D contains a u− v path of length at most `.

Proof. (Sketch) Keep cutting cycles from the given walk until none remains.

Theorem (Theorem 7.3 of CZ). A digraph D is strong if and only if D contains a closed

spanning walk

Proof. ⇒: Assume D strong. Label the vertices v1, v2, . . . , vn. Since D is strong, for

each 1 ≤ i < n, there’s a vi − vi+1 path; and there’s also a vn − v1 path. Concatenating

these n paths gives a closed spanning walk.

⇐: Let W be a closed spanning walk. Let u and v be arbitrary vertices. Since W is

spanning, both u and v are on W and there’s a subwalk of W from u to v. By Theorem 7.2

there’s a u− v path. Therefore, D is strong.

Theorem (Theorem 7.4 of CZ). A nontrivial connected digraph D is Eulerian if and

only if od v = id v for every vertex v of D

Proof. Similar to the proof for undirected graphs.

Theorem (Robbins, Theorem 7.5 of CZ). A nontrivial connected graphs G has a strong

orientation if and only if G contains no bridge, i.e., G is 2-edge-connected.

Proof. (Sketch) Depth-first search G. Direct each tree edge downward and direct each

back edge upward.
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Tournaments

Definitions. A tournament is an orientation of a complete graph, i.e., it is a digraph

such that for any distinct vertices u, v, exactly one of uv and vu is an arc. A tournament

is transitive if uw is an arc whenever both uv and vw are arcs.

Theorem (Theorem 7.6 of CZ). A tournament is transitive if and only if it has no cycles.

Proof. ⇒: Assume tournament T is transitive but contains a cycle v1, v2, . . . , vk, v1. If k =

2, then T contains antiparallel arcs v1v2 and v2v1, contradicting T being a tournament.

Thus, k ≥ 3. Since v1v2 and v2v3 are arcs, transitivity implies v1v3 is an arc. Now that

we know v1v3 is an arc, and since v3v4 is an arc, again transitivity implies v1v4 is an arc.

We reason like this k − 2 times to conclude that v1vk is an arc. However, vkv1 is also an

arc of the digraph (since it’s part of the cycle). Thus, T contains antiparallel arcs v1vk

and vkv1, contradicting T being a tournament.

⇐: Assume tournament T contains no cycle. Let uv and vw be arcs of T . Thus, u 6= w

since T cannot contain antiparallel arcs. The tournament cannot have wu as arc because

if it did it would contain the cycle 〈u, v, w, u〉. Since it’s a tournament and u 6= w, either

uw or wu is an arc. Thus, uw is an arc. Hence, T is transitive.

Theorem (Theorem 7.7 of CZ). If u is a vertex of maximum outdegree in a tournament,

then d(u, v) ≤ 2 for every vertex v.

Proof. Let u be a vertex of maximum outdegree in a tournament T . Assume for the

sake of contradiction that some vertex y satisfies d(u, y) ≥ 3. Define V1 = {x ∈ V (T ) :

d(u, x) = 1 }. Then od u = |V1|, u /∈ V1, y 6= u, and y /∈ V1. No arc can leave {u}∪V1 and

enter y since existence of any such arc would make d(u, y) ≤ 2, contradicting d(u, y) ≥ 3.

Since T is a tournament, any two distinct vertices have exactly one arc joining them.

Hence, for each w ∈ {u} ∪ V1, there’s an arc yw. Thus, od y ≥ |{u}| + |V1| = 1 + od u,

contradicting u having maximum outdegree.

Theorem (Theorem 7.8 of CZ). Every tournament contains a Hamiltonian path.

Proof. Let T be a tournament. We prove by induction on the order n of T . Recall that

Hamiltonian path means spanning path.

If n = 1, then T is trivial and it has a trivial path that’s also spanning. If n = 2, then T

is an oriented K2, and it contains a path of length 1 that spans T .
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Suppose n ≥ 3 and assume inductively that any tournament of order n − 1 contains a

spanning path. Let x be a vertex of T . Then T − x is a tournament of order n − 1.

By inductive assumption, T − x contains a spanning path. Say P : v1, v2, . . . , vn−1 is a

spanning path of T − x. Path P is a path in T as well. If xv1 is an arc of T , then x, P is

a spanning path in T and we are done. If vn−1x is an arc of T , then P, x is a spanning

path in T and we are done. So assume from now on that xv1 /∈ E(T ) and vn−1x /∈ E(T ).

Since T is a tournament, it follows that v1x ∈ E(T ) and xvn−1 ∈ E(T ). Moreover, for

each i, where 2 ≤ i ≤ n−2, either vix ∈ E(T ) or xvi ∈ E(T ), but not both. Now, arc v1x

enters x and arc xvn−1 leaves x. Therefore, there exists some j such that 1 ≤ j ≤ n− 2,

vjx ∈ E(T ), and xvj+1 ∈ E(T ). We now have 〈v1, v2, . . . , vj, x, vj+1, . . . , vn−1〉 as a path

that spans T .

Theorem (Theorem 7.9 of CZ). Every vertex in a nontrivial strong tournament belongs

to some triangle.

Proof. Let v be a vertex in a nontrivial, strong tournament T . Define

U = {u ∈ V (T ) : vu ∈ E(T ) }

and

W = {w ∈ V (T ) : wv ∈ E(T ) }.

Since T is a nontrivial strong tournament, some arc enters v and some arc leaves v. Thus,

U 6= ∅ and W 6= ∅.
Clearly, {{v} ∪ U ∪ W} ⊆ V (T ) since v ∈ V (T ) and U and W are defined as subsets

of V (T ). Let x ∈ V (T ). If x = v, then x ∈ {v}. Suppose x 6= v. Since T is a

tournament, either xv is an arc and vx is an arc, but not both. Thus, x ∈ U or x ∈ W .

Hence, V (T ) ⊆ {{v} ∪ U ∪W}. Therefore, V (T ) = {v} ∪ U ∪W .

Moreover, v /∈ U ∪W by the definition of U and W . Also, U ∩W = ∅ because if there

were any vertex x such that x ∈ U ∩W , then both vx and xv are arcs, contradicting T

being a tournament.

Thus { {v}, U, W } is a partition of V (T ).

Since T is strong, any vertex in U can reach v via some path. Such a path exists since

U 6= ∅. Such a path must have at least one arc that leaves U because v /∈ U . Any arc

leaving U either enters v or enters W since {{v}, U, W} is a partition of V (T ). Now,
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there can be no arc uv leaving U and entering v, because such an arc together with arc

vu that is known to exist would give a pair of antiparallel arcs, contradicting T being a

tournament. Therefore, some arc leaves U and enters W . Let uw be such an arc. We

now have a triangle 〈v, u, w, v〉.

Definitions. A digraph D of order n ≥ 3 is vertex-pancyclic if for every vertex v and

for every ` = 3, 4, . . . , n, digraph D has a cycle of length ` containing v.

Theorem (Moon’s Theorem). Every nontrivial strong tournament is vertex-pancyclic.

Proof. Induction on cycle length `, where the base case holds by Theorem 7.9.

Theorem (Theorem 7.10 of CZ). A nontrivial tournament T is Hamiltonian if and only

if T is strong.

Proof. (Sketch) ⇒: A spanning cycle allows any vertex to reach any other vertex via an

arc of the cycle.

⇐: By Moon’s Theorem.

Theorem (Theorem 7.11 of CZ). If T is a strong tournament of order ≥ 4, then there

exists a vertex v such that T − v is a strong tournament.

Proof. By Moon’s Theorem.


