Chapter 9. Planarity

Definitions. A plane graph G or a planar embedding of G is a drawing of G on the plane in such a way that no two edges meet, except at their common ends. Graphs that do admit such an embedding are called planar; ones that don't are called nonplanar.

A girth of a graph is the length of any smallest cycle if any. An acyclic graph has girth ∞. Thus, $3 \leq$ girth $G \leq \infty$ for any (simple) graph G.

Examples of planar graphs are paths, cycles, trees, and the complete bipartite graphs $K_{2, k}$. Consider a plane graph. A region is a maximal connected area that remains when the edges \& vertices are removed from the plane. The boundary of a region is the vertices and edges touching the region.

Theorem (Jordan Curve Theorem). A simple closed curve partitions the plane into two regions: a bounded interior region and an unbounded exterior region.

Lemma (Lemma A). Any bridge is the boundary of exactly one region. Deleting a bridge (and any resulting isolated vertex) from a plane graph does not change the number of regions. Any nonbridge edge is the boundary of exactly two regions. Deleting a nonbridge edge from a plane graph decreases the number of regions by one.

Theorem (Euler Identity, Theorem 9.1 of CZ). If G is a connected plane graph of order n, size m, and r regions, then $n-m+r=2$.

Proof. We prove by induction on the number of cycles in G. If G has 0 cycle, then G is a tree since G is connected by assumption. Thus, $m=n-1$ and $r=1$. Therefore, $n-m+r=n-(n-1)+1=2$ and the result holds in the base case.

Now let G have k cycles, where $k>0$, and assume inductively that any connected plane graph having fewer than k cycles satisfies the statement of the theorem. Let e be an edge belonging to some cycle of G. The plane graph $G-e$ has n vertices, $m-1$ edges, and $r-1$ regions. Moreover, $G-e$ is connected and has fewer than k cycles. Therefore, by the inductive hypothesis the result holds for $G-e$, i.e., $n-(m-1)+(r-1)=2$. This implies that $n-m+r=2$, so the result holds for G as well.

Theorem (Generalization of Theorem 9.2 of CZ). Let g be a fixed integer ≥ 3. If G is a planar graph of order n, size m, girth $\geq g$, and $n \geq(g+2) / 2$, then $m \leq \frac{g(n-2)}{g-2}$.

Proof. Note that for any planar graph G_{1}, there is a connected, planar graph G_{2} that is a supergraph of G_{1}. Thus we may assume that G is connected.
First, assume G has $<g$ edges. Then G is acyclic since it has girth $\geq g$ and so it has too few edges to contain any cycle. Therefore, G is a tree since it's also connected. Hence, $m=n-1$. Since $n \geq(g+2) / 2$ by assumption, we have

$$
g+2 \leq 2 n
$$

i.e.,

$$
g n-2 n-g+2 \leq g n-2 g
$$

i.e.,

$$
(g-2)(n-1) \leq g(n-2)
$$

i.e.,

$$
m=n-1 \leq \frac{g(n-2)}{g-2}
$$

and the conclusion of the theorem holds.
Next, assume G has $\geq g$ edges. Fix an embedding of G on the plane. For each region i (where $1 \leq i \leq r$) of the plane graph G, let m_{i} be the number of edges on its boundary. Since G has at least g edges, has girth $\geq g$, and is connected, we see that $m_{i} \geq g$ for each i. Thus $\sum_{i=1}^{r} m_{i} \geq g r$. Also, $\sum_{i=1}^{r} m_{i} \leq 2 m$ because, by Lemma A, each bridge contributes 1 to the sum and each nonbridge contributes 2 to the sum. Thus, $g r \leq 2 m$; hence, $r \leq 2 m / g$. Combining this last inequality with Euler Identity we have

$$
2=n-m+r \leq n-m+\frac{2 m}{g}
$$

i.e.,

$$
2 g \leq g n-(g-2) m
$$

i.e.,

$$
(g-2) m \leq g n-2 g
$$

i.e.,

$$
m \leq \frac{g(n-2)}{g-2}
$$

as desired.

Theorem (Theorem 9.2 of CZ). If G is a planar graph of order n, size m, and $n \geq 3$, then $m \leq 3 n-6$.

Proof. Every graph has girth at least 3. Putting $g=3$ in the generalized Theorem 9.2 of CZ gives the result.

Theorem. If G is a bipartite planar graph of order n, size m, and $n \geq 3$, then $m \leq 2 n-4$.
Proof. A bipartite graph has girth at least 4. Putting $g=4$ in the generalized Theorem 9.2 of CZ gives the result.

Theorem (Corollary 9.3 of CZ). Every planar graph contains a vertex of degree ≤ 5.
Proof. Let G be a planar graph of order n and size m. If $n \leq 6$, then every vertex has degree ≤ 5 and we are done. So assume $n>6$. By Theorem 9.2, $m \leq 3 n-6$. Thus,

$$
\frac{m}{n} \leq 3-\frac{6}{n}
$$

i.e.

$$
\frac{2 m}{n} \leq 6-\frac{12}{n}
$$

i.e.

$$
\frac{2 m}{n}<6
$$

since $\frac{12}{n}$ is positive. The last inequality says that the average degree of G is <6. Therefore, there exists at least a vertex whose degree does not exceed the average, i.e., some vertex v has $\operatorname{deg} v \leq \frac{2 m}{n}<6$, i.e., $\operatorname{deg} v \leq 5$.

Theorem (Corollary 9.4 of CZ). K_{5} is nonplanar.
Proof. By Theorem 9.2.
Theorem (Theorem 9.5 of CZ). $K_{3,3}$ is nonplanar.
Proof. By the fact that a bipartite planar graph satisfies $m \leq 2 n-4$.

Exercise. Show that the Petersen graph is nonplanar by using the generalization of Theorem 9.2.

Definition A subdivision G^{\prime} of a graph G is a graph that results from inserting one or more vertices of degree 2 into one or more edges of G.

Theorem (Kuratowski's Theorem). Graph G is planar if and only if G contains no K_{5} or $K_{3,3}$, or subdivision of K_{5} or $K_{3,3}$, as a subgraph.

Exercise. Show that the Petersen graph is nonplanar by using Kuratowski's Theorem.

