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Chapter 9. Planarity

Definitions. A plane graph G or a planar embedding of G is a drawing of G on the

plane in such a way that no two edges meet, except at their common ends. Graphs that

do admit such an embedding are called planar ; ones that don’t are called nonplanar.

A girth of a graph is the length of any smallest cycle if any. An acyclic graph has girth∞.

Thus, 3 ≤ girth G ≤ ∞ for any (simple) graph G.

Examples of planar graphs are paths, cycles, trees, and the complete bipartite graphs K2,k.

Consider a plane graph. A region is a maximal connected area that remains when the

edges & vertices are removed from the plane. The boundary of a region is the vertices

and edges touching the region.

Theorem (Jordan Curve Theorem). A simple closed curve partitions the plane into two

regions: a bounded interior region and an unbounded exterior region.

Lemma (Lemma A). Any bridge is the boundary of exactly one region. Deleting a bridge

(and any resulting isolated vertex) from a plane graph does not change the number of

regions. Any nonbridge edge is the boundary of exactly two regions. Deleting a nonbridge

edge from a plane graph decreases the number of regions by one.

Theorem (Euler Identity, Theorem 9.1 of CZ). If G is a connected plane graph of order n,

size m, and r regions, then n−m + r = 2.

Proof. We prove by induction on the number of cycles in G. If G has 0 cycle, then G

is a tree since G is connected by assumption. Thus, m = n − 1 and r = 1. Therefore,

n−m + r = n− (n− 1) + 1 = 2 and the result holds in the base case.

Now let G have k cycles, where k > 0, and assume inductively that any connected plane

graph having fewer than k cycles satisfies the statement of the theorem. Let e be an edge

belonging to some cycle of G. The plane graph G − e has n vertices, m − 1 edges, and

r − 1 regions. Moreover, G− e is connected and has fewer than k cycles. Therefore, by

the inductive hypothesis the result holds for G− e, i.e., n− (m− 1) + (r − 1) = 2. This

implies that n−m + r = 2, so the result holds for G as well.
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Theorem (Generalization of Theorem 9.2 of CZ). Let g be a fixed integer ≥ 3. If G is

a planar graph of order n, size m, girth ≥ g, and n ≥ (g + 2)/2, then m ≤ g(n−2)
g−2

.

Proof. Note that for any planar graph G1, there is a connected, planar graph G2 that is

a supergraph of G1. Thus we may assume that G is connected.

First, assume G has < g edges. Then G is acyclic since it has girth ≥ g and so it has too

few edges to contain any cycle. Therefore, G is a tree since it’s also connected. Hence,

m = n− 1. Since n ≥ (g + 2)/2 by assumption, we have

g + 2 ≤ 2n

i.e.,

gn− 2n− g + 2 ≤ gn− 2g

i.e.,

(g − 2)(n− 1) ≤ g(n− 2)

i.e.,

m = n− 1 ≤ g(n− 2)

g − 2

and the conclusion of the theorem holds.

Next, assume G has ≥ g edges. Fix an embedding of G on the plane. For each region i

(where 1 ≤ i ≤ r) of the plane graph G, let mi be the number of edges on its boundary.

Since G has at least g edges, has girth ≥ g, and is connected, we see that mi ≥ g for

each i. Thus
∑r

i=1 mi ≥ gr. Also,
∑r

i=1 mi ≤ 2m because, by Lemma A, each bridge

contributes 1 to the sum and each nonbridge contributes 2 to the sum. Thus, gr ≤ 2m;

hence, r ≤ 2m/g. Combining this last inequality with Euler Identity we have

2 = n−m + r ≤ n−m +
2m

g

i.e.,

2g ≤ gn− (g − 2)m

i.e.,

(g − 2)m ≤ gn− 2g

i.e.,

m ≤ g(n− 2)

g − 2

as desired.
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Theorem (Theorem 9.2 of CZ). If G is a planar graph of order n, size m, and n ≥ 3,

then m ≤ 3n− 6.

Proof. Every graph has girth at least 3. Putting g = 3 in the generalized Theorem 9.2

of CZ gives the result.

Theorem. If G is a bipartite planar graph of order n, size m, and n ≥ 3, then m ≤ 2n−4.

Proof. A bipartite graph has girth at least 4. Putting g = 4 in the generalized Theorem

9.2 of CZ gives the result.

Theorem (Corollary 9.3 of CZ). Every planar graph contains a vertex of degree ≤ 5.

Proof. Let G be a planar graph of order n and size m. If n ≤ 6, then every vertex has

degree ≤ 5 and we are done. So assume n > 6. By Theorem 9.2, m ≤ 3n− 6. Thus,

m

n
≤ 3− 6

n

i.e.
2m

n
≤ 6− 12

n

i.e.
2m

n
< 6

since 12
n

is positive. The last inequality says that the average degree of G is < 6. There-

fore, there exists at least a vertex whose degree does not exceed the average, i.e., some

vertex v has deg v ≤ 2m
n

< 6, i.e., deg v ≤ 5.

Theorem (Corollary 9.4 of CZ). K5 is nonplanar.

Proof. By Theorem 9.2.

Theorem (Theorem 9.5 of CZ). K3,3 is nonplanar.

Proof. By the fact that a bipartite planar graph satisfies m ≤ 2n− 4.

Exercise. Show that the Petersen graph is nonplanar by using the generalization of

Theorem 9.2.

Definition A subdivision G′ of a graph G is a graph that results from inserting one or

more vertices of degree 2 into one or more edges of G.
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Theorem (Kuratowski’s Theorem). Graph G is planar if and only if G contains no K5

or K3,3, or subdivision of K5 or K3,3, as a subgraph.

Exercise. Show that the Petersen graph is nonplanar by using Kuratowski’s Theorem.


