Chapter 9. Planarity

Definitions. A plane graph G or a planar embedding of G is a drawing of G on the plane in such a way that no two edges meet, except at their common ends. Graphs that do admit such an embedding are called *planar*; ones that don't are called *nonplanar*. A girth of a graph is the length of any smallest cycle if any. An acyclic graph has girth ∞ . Thus, $3 \leq \text{girth } G \leq \infty$ for any (simple) graph G.

Examples of planar graphs are paths, cycles, trees, and the complete bipartite graphs $K_{2,k}$. Consider a plane graph. A *region* is a maximal connected area that remains when the edges & vertices are removed from the plane. The *boundary* of a region is the vertices and edges touching the region.

Theorem (Jordan Curve Theorem). A simple closed curve partitions the plane into two regions: a bounded interior region and an unbounded exterior region.

Lemma (Lemma A). Any bridge is the boundary of exactly one region. Deleting a bridge (and any resulting isolated vertex) from a plane graph does not change the number of regions. Any nonbridge edge is the boundary of exactly two regions. Deleting a nonbridge edge from a plane graph decreases the number of regions by one.

Theorem (Euler Identity, Theorem 9.1 of CZ). If G is a connected plane graph of order n, size m, and r regions, then n - m + r = 2.

Proof. We prove by induction on the number of cycles in G. If G has 0 cycle, then G is a tree since G is connected by assumption. Thus, m = n - 1 and r = 1. Therefore, n - m + r = n - (n - 1) + 1 = 2 and the result holds in the base case.

Now let G have k cycles, where k > 0, and assume inductively that any connected plane graph having fewer than k cycles satisfies the statement of the theorem. Let e be an edge belonging to some cycle of G. The plane graph G - e has n vertices, m - 1 edges, and r - 1 regions. Moreover, G - e is connected and has fewer than k cycles. Therefore, by the inductive hypothesis the result holds for G - e, i.e., n - (m - 1) + (r - 1) = 2. This implies that n - m + r = 2, so the result holds for G as well. **Theorem** (Generalization of Theorem 9.2 of CZ). Let g be a fixed integer ≥ 3 . If G is a planar graph of order n, size m, girth $\geq g$, and $n \geq (g+2)/2$, then $m \leq \frac{g(n-2)}{g-2}$.

Proof. Note that for any planar graph G_1 , there is a connected, planar graph G_2 that is a supergraph of G_1 . Thus we may assume that G is connected. First, assume G has $\langle g \rangle$ edges. Then G is acyclic since it has girth $\geq g$ and so it has too few edges to contain any cycle. Therefore, G is a tree since it's also connected. Hence,

$$g+2 \le 2n$$

i.e.,

$$gn - 2n - g + 2 \le gn - 2g$$

i.e.,

$$(g-2)(n-1) \le g(n-2)$$

i.e.,

$$m = n - 1 \le \frac{g(n-2)}{g-2}$$

and the conclusion of the theorem holds.

m = n - 1. Since $n \ge (g + 2)/2$ by assumption, we have

Next, assume G has $\geq g$ edges. Fix an embedding of G on the plane. For each region i (where $1 \leq i \leq r$) of the plane graph G, let m_i be the number of edges on its boundary. Since G has at least g edges, has girth $\geq g$, and is connected, we see that $m_i \geq g$ for each i. Thus $\sum_{i=1}^r m_i \geq gr$. Also, $\sum_{i=1}^r m_i \leq 2m$ because, by Lemma A, each bridge contributes 1 to the sum and each nonbridge contributes 2 to the sum. Thus, $gr \leq 2m$; hence, $r \leq 2m/g$. Combining this last inequality with Euler Identity we have

$$2 = n - m + r \le n - m + \frac{2m}{g}$$

i.e.,

$$2g \le gn - (g - 2)m$$

i.e.,

$$(g-2)m \le gn - 2g$$

i.e.,

$$m \le \frac{g(n-2)}{g-2}$$

as desired.

Theorem (Theorem 9.2 of CZ). If G is a planar graph of order n, size m, and $n \ge 3$, then $m \le 3n - 6$.

Proof. Every graph has girth at least 3. Putting g = 3 in the generalized Theorem 9.2 of CZ gives the result.

Theorem. If G is a bipartite planar graph of order n, size m, and $n \ge 3$, then $m \le 2n-4$.

Proof. A bipartite graph has girth at least 4. Putting g = 4 in the generalized Theorem 9.2 of CZ gives the result.

Theorem (Corollary 9.3 of CZ). Every planar graph contains a vertex of degree ≤ 5 .

Proof. Let G be a planar graph of order n and size m. If $n \leq 6$, then every vertex has degree ≤ 5 and we are done. So assume n > 6. By Theorem 9.2, $m \leq 3n - 6$. Thus,

$$\frac{m}{n} \le 3 - \frac{6}{n}$$

i.e.

$$\frac{2m}{n} \le 6 - \frac{12}{n}$$

i.e.

$$\frac{2m}{n} < 6$$

since $\frac{12}{n}$ is positive. The last inequality says that the average degree of G is < 6. Therefore, there exists at least a vertex whose degree does not exceed the average, i.e., some vertex v has deg $v \leq \frac{2m}{n} < 6$, i.e., deg $v \leq 5$.

Theorem (Corollary 9.4 of CZ). K_5 is nonplanar.

Proof. By Theorem 9.2.

Theorem (Theorem 9.5 of CZ). $K_{3,3}$ is nonplanar.

Proof. By the fact that a bipartite planar graph satisfies $m \leq 2n - 4$.

Exercise. Show that the Petersen graph is nonplanar by using the generalization of Theorem 9.2.

Definition A subdivision G' of a graph G is a graph that results from inserting one or more vertices of degree 2 into one or more edges of G.

Theorem (Kuratowski's Theorem). Graph G is planar if and only if G contains no K_5 or $K_{3,3}$, or subdivision of K_5 or $K_{3,3}$, as a subgraph.

Exercise. Show that the Petersen graph is nonplanar by using Kuratowski's Theorem.