CZ Exercise 4.8

Student 2

Theorem 1. If every vertex of a graph G has degree at least 2, then G contains a cycle.

Proof. Suppose G is a graph whose every vertex has degree at least 2. Pick an arbitrary vertex and call it u_0 . Since deg $u_0 \ge 2$, vertex u_0 has a neighbor, say u_1 . Since deg $u_1 \ge 2$, vertex u_1 has a neighbor different from u_0 , say u_2 .

Since deg $u_2 \ge 2$, vertex u_2 has a neighbor different from u_1 . If u_0 is a neighbor of u_2 , then we have a cycle u_0, u_1, u_2, u_0 , and we are done. Otherwise, u_2 has another neighbor, say u_3 , that is neither u_0 nor u_1 .

We continue the reasoning like so. Say we have a path $u_0, u_1, u_2, \ldots, u_i$. We consider u_i . By assumption, deg $u_i \ge 2$. If some u_j $(0 \le j < i - 1)$ is a neighbor of u_i , we have a cycle $u_j, u_{j+1}, \ldots, u_{i-1}, u_i, u_j$, and we are done. Otherwise, u_i has another neighbor, say u_{i+1} , distinct from any of the u_j $(0 \le j < i)$, and we extend the path by one more edge to $u_0, u_1, u_2, \ldots, u_i, u_{i+1}$.

But we cannot keep extending the path forever becuase G is finite. So there must exist some i such that $u_0, u_1, u_2, \ldots, u_{i-1}, u_i$ is a path and all (at least 2) neighbors of u_i are some of the vertices u_j ($0 \le j < i$). In this case we get a cycle as desired.