CZ Exercise 4.8

Student 2

Theorem 1. If every vertex of a graph G has degree at least 2, then G contains a cycle.

Proof. Suppose G is a graph whose every vertex has degree at least 2. Pick an arbitrary vertex and call it u_{0}. Since $\operatorname{deg} u_{0} \geq 2$, vertex u_{0} has a neighbor, say u_{1}. Since $\operatorname{deg} u_{1} \geq 2$, vertex u_{1} has a neighbor different from u_{0}, say u_{2}.

Since $\operatorname{deg} u_{2} \geq 2$, vertex u_{2} has a neighbor different from u_{1}. If u_{0} is a neighbor of u_{2}, then we have a cycle $u_{0}, u_{1}, u_{2}, u_{0}$, and we are done. Otherwise, u_{2} has another neighbor, say u_{3}, that is neither u_{0} nor u_{1}.

We continue the reasoning like so. Say we have a path $u_{0}, u_{1}, u_{2}, \ldots, u_{i}$. We consider u_{i}. By assumption, $\operatorname{deg} u_{i} \geq 2$. If some $u_{j}(0 \leq j<i-1)$ is a neighbor of u_{i}, we have a cycle $u_{j}, u_{j+1}, \ldots, u_{i-1}, u_{i}, u_{j}$, and we are done. Otherwise, u_{i} has another neighbor, say u_{i+1}, distinct from any of the $u_{j}(0 \leq j<i)$, and we extend the path by one more edge to $u_{0}, u_{1}, u_{2}, \ldots, u_{i}, u_{i+1}$.

But we cannot keep extending the path forever becuase G is finite. So there must exist some i such that $u_{0}, u_{1}, u_{2}, \ldots, u_{i-1}, u_{i}$ is a path and all (at least 2) neighbors of u_{i} are some of the vertices $u_{j}(0 \leq j<i)$. In this case we get a cycle as desired.

