
MCS-375: Algorithms: Analysis and Design Handout #DPS
San Skulrattanakulchai
Gustavus Adolphus College Oct 30, 2014

Study Questions for Dynamic Programming

Recurrence

1. A quantity m(i) has the recurrence

m(i) = max{m(j) + c(i, j) : i < j ≤ n } 1 ≤ i ≤ n.

The base case is not shown, and c(·, ·) is a given cost function.

(i) To specifiy the base case we will supply the value of m(0) or m(n+1). Which
one does not work? Explain your answer.

(ii) Assume we solve this problem by dynamic programming. What is the running
time for the table-filling step? Explain your answer.

2. A certain problem has the following recurrence, where c(·, ·) is a given cost function.

m(i) =

{
0 if i = 1

min{ c(k, i) +
∑k

j=1m(j) : 1 ≤ k < i } if 1 < i ≤ n

(i) Explain why a straightforward implementation of the recurrence results in an
O(n3) time bound for the table-filling step.

(ii) Show how to fill the table in time O(n2).

Flight Problem

We will use the backward version of recurrence.

m(i) =

{
0 if i = n
min{ c(i, k) + m(k) : i < k ≤ n } if 1 ≤ i < n

1. The following recursive procedure route(i) prints out the route from city i to
city n. E.g.,

1 5 10

gives the route from city 1 to city 10 that goes through city 5. Complete the
pseudocode for route(i) by giving 1 statement for each of a–c. Assume that the
M [·] and K[·] tables have been filled in; here K[i] is the minimizer corresponding
to M [i].



2 MCS-375: Handout #DPS

/* Precondition: 1 ≤ i ≤ n */
route(i) {
if i = n then {

a
} else {

b
c

}
}

2. Here are the values of c(i, k):

k : 2 3 4 5
i : 1 3 4 11 116

2 3 8 112
3 6 111
4 110

Give the 2 missing entries in the table below. Here K[i] is the minimizer for M [i].
Show your work.

i 1 2 3 4 5
M [i] ? 112 111 110 0
K[i] ? 5 5 5 –

3. We want to solve the flight problem, but instead of the cost function c(·, ·), we are
given the functions t(·) and `(·), where,
t(i) is the cost of taking off from city i; and
`(i) is the cost of landing at city i.

(i) Explain how to use the original recurrence to solve this problem.

(ii) Modify the recurrence for this problem.

4. We are given two cities a, b where 1 < a < b < n, and we never want to fly directly
from a to b.

(i) Modify the recurrence for this problem.

(ii) Instead of changing the original recurrence, modify the cost function c(·, ·).

Longest Common Subsequence Problem

1. Professor Dull proposes the following algorithm for printing out the LCS of x1x2 . . . xi

and y1y2 . . . yj.



MCS-375: Handout #DPS 3

/* print LCS of x1x2 . . . xi and y1y2 . . . yj */
printlcs(i, j) {

if i = 0 or j = 0 then
return

if C[i, j] = C[i− 1, j − 1] + 1 then {
printlcs(i− 1, j − 1)
print xi

} else if C[i− 1, j] > C[i, j − 1] then
printlcs(i− 1, j)

else /* xi 6= yj and C[i− 1, j] ≤ C[i, j − 1] */
printlcs(i, j − 1)

}

Give input strings X = x1x2 . . . xm and Y = y1y2 . . . yn such that printlcs(m,n)
will print out an incorrect LCS.

2. Write a correct pseudocode for printlcs procedure.

3. Write a procedure printX-lcs(i, j) that will print out the string x1x2 . . . xi minus
the LCS. E.g., if X is stamp and Y is tame, then printX-lcs(5, 4) will print sp
since LCS(stamp, tame) is tam, so stamp with the LCS deleted from it is sp.

4. Suppose we execute our LCS algorithm on input strings X = x1x2 . . . xn and Y =
y1y2 . . . yn of equal length. Give the running time for each step. Explain.

5. Here is a backward recurrence for the LCS problem.

c(i, j) =


0 if i = m + 1 or j = n + 1 [base case]
c(i + 1, j + 1) + 1 if 1 ≤ i ≤ m, 1 ≤ j ≤ n, xi = yj [match case]
max{ c(i, j + 1), c(i + 1, j) } if 1 ≤ i ≤ m, 1 ≤ j ≤ n, xi 6= yj[unmatch case]

(i) What is the quantity we are seeking?

(ii) Fill in the following dynamic programming table for the input strings PAPAL
and APPLY.

A P P L Y
P 0
A 0
P 0
A 0
L 0

0 0 0 0 0 0



4 MCS-375: Handout #DPS

Matrix-Chain Multiplication Problem

1. Here is the recurrence for the problem.

m(i, j) =

{
0 if i = j
min{m(i, k) + m(k + 1, j) + pi−1pkpj : i ≤ k < j } if i < j.

Rewrite the recurrence using the base case i = j − 1 instead of i = j.

2. Matrix A has dimension 2 x 5; matrix B has dimension 5 x 2; and matrix C has
dimension 2 x 10. Find the optimal way to fully parenthesize the product ABC.
Show your work.


