
Chapter 15

Java Swing, UML, and

Concurrency

15.1 Introduction

In this chapter, we’ll first look how we can use Java packages to write pro-
grams that user with a graphical interface and respond to the user’s manip-
ulation of interface elements, such as clicking on buttons. In particular, we’ll
look at “Java Swing,” which supports writing such programs.

Finally, we’ll use these programs as the setting in which to introduce the
more conceptually significant material, namely concurrency. A concurrent
system is one in which multiple activities go on at once. We’ll show how to
develop programs that can divide their attention between multiple activities.
Most importantly, we’ll show how the concept of representation invariant,
which we’ve emphasized in prior chapters, gains renewed importance as the
key to preventing unwanted interactions between concurrent activities. The
chapter concludes with an opportunity for you to apply concurrent program-
ming techniques to a simulation program.

15.2 Event-driven graphical user interface apps

Many programs interact with their users in a very old-fashioned style, char-
acterized by two primary features:

• All input and output is textual: the user and the program both type
lines of text, instead of the user pointing at visual information that
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the program shows.

• The program is in charge of the interaction. The user is reduced to
answering the questions the program asks, rather than taking charge
and directly manipulating the program.

This textual, program-directed style of interaction made sense in its orig-
inal historical context, roughly the early 1960s. Among other things, the
typical computer user didn’t have access to any hardware that supported
graphical interaction: sending the computer a line of text and receiving a
line of text in response was the best that most could hope for. (Many users
had to settle for batch processing, which involved sending enough textual in-
put for the entire running of the program and then receiving back a printout
of the entire output, rather than being able to incrementally give and take.)

However, times have changed, and today users typically have computers
that allow for a tightly-coupled graphical interaction, in which the user takes
charge and directly manipulates the program’s interface by pushing buttons,
sliding sliders, checking checkboxes, typing into fields, etc. The role of the
program is no longer to step through a fixed sequence of questions and
answers, but rather to perform two basic functions:

• Present a collection of objects to the user.

• Respond to whatever manipulations of those objects the user performs.

In this section, we’ll see how such programs are written. They are called
event-driven graphical user interface (GUI—pronounced gooey) programs,
because they not only present a GUI, but moreover are driven by outside
events, such as the user clicking on a button. In particular, we’ll look at
Java Swing applications, which are event-driven GUI programs (apps) built
using a java package called javax.swing which provides many GUI classes
the can be used “off the shelf.”

Java Swing is built on top of the Abstract Window Toolkit (AWT), which
provides a platform-independent framework for graphical and window-based
programming. In particular, the AWT was used for programming applets,
which are event-driven GUI programs that are designed to be components
of documents on the World Wide Web, rather than standing alone. Rather
than running lots of separate programs, the user just runs a single web
browser program, which lets them view and interact with lots of different
kinds of multimedia hypertext documents. Those documents contain all the
usual kinds of content, like words, tables, and pictures, but also interactive
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content in the form of applets. We will not be considering applets, but
instead will concentrate on Swing apps.

Object-oriented programming plays a critical role in event-driven GUI
programs. From our own perspective, we will be able to write our programs
reasonably simply and easily because there is a large “library” of pre-written
classes for such interaction components as buttons and checkboxes. Thus we
can just create appropriate instances of these classes, without worrying about
the details of how they work inside.

From the perspective of GUI programmers, the key fact is that all these
individual component classes, like JButton and JCheckbox, are actually sub-
classes of a general Component class. Any Component knows how to draw
itself. Any Component knows how to respond to the fact that a mouse button
has been pressed while the mouse was pointing into that Component’s area.
Thus the programmer can more easily deal with the wide variety of different
kinds of interaction mechanisms by simply telling the programs components
how to deal with the particular user events they need to deal with. The
programmer can then just treat the whole program as nothing but a bunch
of Components, asking each Component to draw itself on the screen, without
knowing or caring that they do so in varying ways. When a mouse but-
ton is pressed, it notifies the appropriate Component, without caring that a
JTextField might treat this entirely differently from a JButton—they are
both still Components.

Java packages

Java provides a library of thousands of classes for the programmer’s use.
Additionally, other organizations and vendors provide other special-purpose
classes which programmers choose to use. Given the organizational com-
plexity of maintaining and using such a large number of usable classes, and
in particular the strong probability that the same names might be used in
different contexts, Java has specified a package system to organize these
classes in smaller groupings (packages). For example, one very common and
useful class is ArrayList, which is part of the java.util package, which
(as you might imagine) contains a host of utility classes. You can use this
class in a program by referring to it with its fully qualified name which is
java.util.ArrayList. Since referring to it in that manner is cumbersome,
Java allows you to shorten your references to ArrayList by including the
following import statement statement towards the top of your program:

import java.util.ArrayList;
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Having done this, your can then reference the class java.util.ArrayList

(for example, when declaring a variable) with the shortened form ArrayList.
Packaging is done in a hierarchical or tree-structured manner. Thus, the

java.util package is contained inside the java package (which happens
to be empty), and in turn contains the java.util.concurrent subpackage
(which is not empty).

In addition to allowing Java to organize its classes, the same pack-
aging mechanism is used by programmers to organize their own classes.
Certain naming conventions have evolved for these naming packages. For
example, suppose you work in the Simulation Games division of a game-
writing company called Outrageous Games, which maintains a website at
www.outrageousgames.com. If the programmer is asked to write a program
that plays the Game of Life, then the programming for this project might
be done in the com.outrageousgames.simulation.life package. Notice
that this name goes from most general (the company) to more specific (the
division, then the particular project).

Packaging is implemented in Java by using directories (folders).
For example, if you were to write a Java class Life.java in the
com.outrageousgames.simulation.life package, it would be located in
the following sub-directory of the base source folder:

com/outrageousgames/simulation/life

Since your program might involve several packages, it can become very te-
dious remembering where the various packages are and doing the appropriate
compile statements, since the compiled files must also be stored according
to the same directory structure. Fortunately, most Integrated Development
Environments (IDEs) such as Eclipse simplify the creation, computation,
execution, and even the documentation of programs written with packages.

Fifteen puzzle, version 1

Our first example GUI program is shown in figure 15.1. This is a simulation
of the sliding 15-tile puzzle. The real puzzle has 15 numbered tiles that
can slide around inside a frame that has room for 16 tiles, so that there
is always one empty position. After sliding the tiles around for a while to
scramble them, the goal is to get them back into their original arrangement,
in numerical order with the blank space in the lower right corner. Our
program simulates the puzzle with a grid of 16 buttons, of which 15 are
labeled with the numbers 1 through 15, while the remaining one has a blank
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Figure 15.1: The sliding 15-tile puzzle app

label, representing the empty position. If the user clicks on a numbered
button that is in the same row or column as the blank one, that means they
want to slide the tile they clicked on, pushing along with it any others that
intervene between it and the empty position. We simulate this by copying
the numeric labels over from each button to its neighbor. We also set the
clicked-on button’s label to an empty string, because it becomes the newly
empty one.

In order to program this puzzle, we will adopt the object-oriented per-
spective and view the program as a collection of interacting objects. Some
of the objects have visible representations on the screen when our program
is running. Most of these objects are either in java.awt (the base package
for the Abstract Window Toolkit, abbreviated AWT) or javax.swing (the
base package for Java Swing). For example, most of these objects instances
of the subclasses of the Component class, which is in the java.awt package.
The Components in our program are as follows:

• There are 16 instances of the class JButton, which is a Swing class
derived from Component. Each JButton has a label (empty in one
case), and can respond to being pushed.

• There is another instance of the class JButton, labeled “Initialize,”
that will allow the user to initialize the numbers as in figure 15.1



6 CHAPTER 15. JAVA SWING, UML, AND CONCURRENCY

• There is also one object representing the program as a whole, contain-
ing the grid of Buttons. This object is an instance of a class we’ll
define, called Puzzle. The Puzzle class is a subclass of an Swing class
called JFrame, used for all Swing programs that create their own win-
dows on the screen. As the class hierarchy in figure 15.2 shows, the
JFrame class is indirectly descended from Component, since a JFrame

is visibly present on the screen. More specifically, since a JFrame can
contain other Components (like our Buttons), the JFrame class is de-
scended from a subclass of Component called Container, which is an
AWT class providing the ability to contain subcomponents.

In addition to the objects mentioned above, there are some others that
operate behind the scenes:

• Our Puzzle, like any Container, needs a layout manager to specify
how the subcomponents should be laid out on the screen. Actually,
there are two layout managers:

– The default layout manager for a JFrame (of which Puzzle is a
subclass) is the BorderLayout, which allows us to put a control
panel at the top (BorderLayout.NORTH) which only contain the
Initialize button now, and the main panel, which contains the
tiles in the center (BorderLayout.CENTER).

– We set the layout manager for the main panel to a GridLayout,
since we want the tile to form a 4 × 4 grid.

We can describe the class structure of the classes that are involved in our
program using a standard notation known as the Unified Modeling Language,
or UML, as illustrated in figure 15.2. This notation also provides means for
expressing many other aspects of object-oriented design, not just the class
hierarchy. We’ll gradually explain more and more of the notation, as the
need arises. (Even so, we’ll only see the tip of the iceberg.)

The portion of the class hierarchy used in this program is shown in fig-
ure 15.2. Note that the only class in the diagram that is not a library class
is Puzzle, which is a direct subclass of JFrame. All the other classes (other
than the fundamental Object class) are in java.awt or javax.swing. Most
of the Swing classes start with the letter J.

Without further ado, let’s go directly to the portion of the Puzzle.java

file that deals with the initial construction and layout of the Puzzle object:
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Figure 15.2: Class hierarchy for 15-tile puzzle app
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package edu.gustavus.mcs178.npuzzle.v1;

import java.awt.BorderLayout;

import java.awt.EventQueue;

import java.awt.GridLayout;

import java.awt.HeadlessException;

import javax.swing.JButton;

import javax.swing.JFrame;

import javax.swing.JPanel;

public class Puzzle extends JFrame {

// The tiles of the puzzle are a square grid of PUZZLE_SIZE by PUZZLE_SIZE

public static final int PUZZLE_SIZE = 4;

// Each tile is an approximate square of approximately this size in pixels

public static final int BUTTON_WIDTH = 70;

// Computed dimensions of the JFrame

public static final int WINDOW_WIDTH = PUZZLE_SIZE * BUTTON_WIDTH;

public static final int WINDOW_HEIGHT = (PUZZLE_SIZE + 1) * BUTTON_WIDTH;

private JButton[][] tiles;

private int blankRow;

private int blankCol;

public Puzzle() throws HeadlessException {

int numButtons = PUZZLE_SIZE * PUZZLE_SIZE;

setTitle((numButtons - 1) + " Puzzle");

setSize(WINDOW_WIDTH, WINDOW_HEIGHT);

// controlPanel contains high-level controls for the game

JPanel controlPanel = new JPanel();

add(controlPanel, BorderLayout.NORTH);

JButton initializeButton = new JButton("Initialize");

controlPanel.add(initializeButton);
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// mainPanel contains the grid of tiles (which are JButtons)

JPanel mainPanel = new JPanel(new GridLayout(PUZZLE_SIZE, PUZZLE_SIZE));

tiles = new JButton[PUZZLE_SIZE][PUZZLE_SIZE];

add(mainPanel, BorderLayout.CENTER);

// set up the grid of tiles in mainPanel

for (int row = 0; row < PUZZLE_SIZE; row++) {

for (int col = 0; col < PUZZLE_SIZE; col++) {

JButton tile = new JButton();

tiles[row][col] = tile;

mainPanel.add(tile);

}

}

int tileCount = 0;

for(int row = 0; row < PUZZLE_SIZE; row++){

for(int col = 0; col < PUZZLE_SIZE; col++){

tileCount++;

tiles[row][col].setText("" + tileCount);

}

}

blankRow = PUZZLE_SIZE - 1;

blankCol = PUZZLE_SIZE - 1;

tiles[blankRow][blankCol].setText("");

}

public static void main(String[] args) {

EventQueue.invokeLater(new Runnable()

{

public void run() {

Puzzle frame = new Puzzle();

frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

frame.setVisible(true);

}

});

}

}
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Before explaining the code, we should note that the program, which can
be compiled and will run, does not yet do what we want! It will result in the
an application resembling the one in figure 15.1 (which is a screenshot from
a Mac), but the buttons do nothing other than highlighting themselves when
pressed. We will construct the program in stages (versions), where this first
version simply arranges the basic geometry of our app.

This code includes a number of Java features that bear explaining, which
we will explain from top to bottom:

• The package line at the top specifies the package within which Puzzle

lives. Note that the naming of the package corresponds to the naming
convention we described above, with two explanations: (a) npuzzle

refers to the fact that the Fifteen Puzzle is just one example of such
a puzzle: 15 corresponds to a 4 × 4 square (N = 15), 24 corresponds
to a 5 × 5 square (N = 24), etc; (b) v1 indicates that this is the first
version of the puzzle.

• The import statements import all of the AWT and Swing classes use
in the puzzle.

• The constants PUZZLE_SIZE, BUTTON_WIDTH, WINDOW_WIDTH, and
WINDOW_HEIGHT determine the size of the tiles and windows.

• The instance variables for the consist of:

– tiles, which is a 2-dimensional array of JButtons; and

– blankRow and blankCol, which are int variable keeping track of
the blank tile.

• The constructor Puzzle(), as a subclass of JFrame, throws a
HeadlessException, which occurs “when code that is dependent on
a keyboard, display, or mouse is called in an environment that does
not support a keyboard, display, or mouse”, quoting from the Java
documentation. This is a RuntimeException that doesn’t need to be
caught and shouldn’t even occur on a desktop computer.

• The remaining code in the constructor Puzzle() puts the puts a con-
trol panel (with an initialize button) in the top (NORTH) of the Puz-
zle’s content, and the main panel (with the tile buttons) in the center
(CENTER) of the Puzzle’s content, puts a reference to each tile into
the tiles grid, initializes the strings in all of the tiles, and records the
position of the blank tile.
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• Finally, the main(String[] args) procedure is called in the manner
required by Swing. Without getting into the details, we simply say
that it creates a runnable process that, when evoked, will respond as
programmed to user input (mouse-clicks and keyboard input).

At this point, we have a nice looking app that unfortunately doesn’t do
anything interesting. We next consider how to make it react to user input.

Fifteen puzzle, version 2

To start this process, we will start by making the initialize button work
properly. Specifically, we will alter the program so that when launched, it
will present the initialize button and tiles, except that the tiles will have no
text. The user can then click on the initialize button in order to put the
appropriate text on the tiles (as well as recording where the blank tile is
located).

Before getting into the details regarding how we can get Swing and AWT
classes to react appropriately to user input events, let’s first remove the
initialization code from the constructor and put it into a method called
initializeTiles() in Puzzle:

public void initializeTiles() {

int tileCount = 0;

for(int row = 0; row < PUZZLE_SIZE; row++){

for(int col = 0; col < PUZZLE_SIZE; col++){

tileCount++;

tiles[row][col].setText("" + tileCount);

}

}

blankRow = PUZZLE_SIZE - 1;

blankCol = PUZZLE_SIZE - 1;

tiles[blankRow][blankCol].setText("");

}

Having isolated this code, let’s now consider how AWT and Swing deal
with user events. AWT has class called ActionEvent that is used to spec-
ify, for example, the event of clicking on a button. In order to have the
button respond as desired to that action event, it must implement the
ActionListener interface, which is also contained in the AWT. The only
method that the ActionListener interface requires to be implemented is
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actionPerformed(ActionEvent event), which defines how the button re-
acts to the event.

To carry out this process for the initialize button, we proceed by doing
the following two things:

1. write a class called InitializeActionListener that implements
actionPerformed(ActionEvent event); and

2. connect up an InitializeActionListener object to the actual ini-
tialize button.

Following is the code for the InitializeActionListener class:

package edu.gustavus.mcs178.npuzzle.v2;

import java.awt.event.ActionEvent;

import java.awt.event.ActionListener;

public class InitializeActionListener implements ActionListener {

private Puzzle puzzle;

public InitializeActionListener(Puzzle puzzle) {

this.puzzle = puzzle;

}

public void actionPerformed(ActionEvent event) {

puzzle.initializeTiles();

}

}

The constructor for InitializeActionListener must be passed an in-
stance of the Puzzle object. Then, when it is asked to preform its action,
it tells that Puzzle object to initialize its tiles, as was desired.

To connect up the InitializeActionListenerwith the initialize button
and the puzzle, we simply add one line (the middle line below) to the two
lines in Puzzle that deal with initializeButton:

JButton initializeButton = new JButton("Initialize");

initializeButton.addActionListener(new InitializeActionListener(this));

controlPanel.add(initializeButton);
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With these two additions, the initialize button will now function as de-
sired.

Fifteen puzzle, version 3

To finish up the puzzle, we need to add action listeners to each of the tiles
(which are JButtons) that the tiles to “move”’ appropriately. Actually, they
won’t actually move; instead, there textual labels simply need to change
appropriately in order to simulate the desired movement.

First, given that we have know the position of each tile within the grid
by its position within the two-dimensional tile array, let’s write a method
called pushTile(int row, int col) in Puzzle that does this relabeling:

public void pushTile(int row, int col){

if (row == blankRow) {

for ( ; blankCol < col; blankCol++) {

tiles[blankRow][blankCol].setText

(tiles[blankRow][blankCol+1].getText());

}

for ( ; blankCol > col; blankCol--) {

tiles[blankRow][blankCol].setText

(tiles[blankRow][blankCol-1].getText());

}

} else if (col == blankCol) {

for ( ; blankRow < row; blankRow++) {

tiles[blankRow][blankCol].setText

(tiles[blankRow+1][blankCol].getText());

}

for ( ; blankRow > row; blankRow--) {

tiles[blankRow][blankCol].setText

(tiles[blankRow-1][blankCol].getText());

}

}

tiles[blankRow][blankCol].setText("");

}

The correctness of the above code critically depends on a feature of for loops
that we haven’t stressed previously. Namely, if the test condition isn’t true
to start with, the loop’s body will be executed zero times. That is, the test
is done before each iteration of the loop, even the first one.
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Exercise 15.1

Explain in more detail how this assures correctness. In particular,
answer the following questions:

a. Suppose both the row and the column are equal to the blank
position. What will happen?

b. Suppose the row is equal, but the column number of the
blank square is less than that which is clicked on. This
means that the first for loop’s body will be executed at
least once. When that first loop finishes, how do you know
that the second for loop’s body won’t also be executed?

To finish the program, we need to give each of the tiles an action
listener that will call pushTiles(int row, int col) appropriately. We
do this by creating a class called TileActionListener, analogous to
InitializeActionListener, that will do exactly this. Clearly, we must
also pass the constructor for TileActionListener the tiles row and col-
umn:

package edu.gustavus.mcs178.npuzzle.v3;

import java.awt.event.ActionEvent;

import java.awt.event.ActionListener;

public class TileActionListener implements ActionListener {

private Puzzle puzzle;

private int row, col;

public TileActionListener(Puzzle puzzle, int row, int col){

this.puzzle = puzzle;

this.row = row;

this.col = col;

}

public void actionPerformed(ActionEvent event) {

puzzle.pushTile(row, col);

}

}
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Finally, we modify the code at the end of the Puzzle construc-
tor as follows in order to connect up each tile with the an appropriate
TileActionListener:

// set up the grid of tiles in mainPanel

for (int row = 0; row < PUZZLE_SIZE; row++) {

for (int col = 0; col < PUZZLE_SIZE; col++) {

JButton tile = new JButton();

tiles[row][col] = tile;

tile.addActionListener(new TileActionListener(this, row, col));

mainPanel.add(tile);

}

}

initializeTiles();

Note that we ended with a call to the initializeTiles(), so that the
tiles have been appropriately initialized.

Fifteen puzzle, version 4

If we want to add additional features, we can just add more items to the
controlPanel. For example, it would be nice if there was a “Randomize”
button next to the “Initialize” one, for people who don’t want to do their own
scrambling of the tiles. We’ll write a randomizeTilesmethod for the Puzzle
class, and then leave you to add the appropriate ActionListener class and
JButton. One aside: when you add a new JButton to the controlPanel, we
said it would go next to the “Initialize” one. Why? Well, that has to do with
the controlPanel’s layout. But if you look at the above Puzzle constructor,
you’ll see we didn’t set a layout for the controlPanel, just for the program
itself and the mainPanel. The solution to this mystery is that each Panel

when constructed starts out with a default layout, a so-called FlowLayout.
For the other two panels, we had to change to a different layout, but for
the controlPanel the default was just what we wanted. It puts a little
space between the constituents (for example, between the “Initialize” and
“Randomize” buttons) and then centers the whole group.

There are two basic approaches to how the randomizeTiles method
could work. One would be to literally randomize the sixteen labels, by
selecting any of the sixteen to be on the first tile, then any of the remaining
fifteen to go on the next tile, etc. A different approach would be to simply
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2 1

3

Figure 15.3: From this configuration, no amount of sliding the tiles will put
the numbers in order with the blank in the lower right.

randomly shove the tiles around for a while, using pushTile, until we were
satisfied that they were adequately scrambled. The big problem with the
first approach is that you can get into configurations that can’t be solved.
To see this in a simpler setting, consider what might happen in a 2×2 sliding
tile puzzle, which has three numbered tiles. It shouldn’t take much playing
around to convince you that the configuration shown in figure 15.3 can’t be
solved, since the tiles can only be cycled. Keep in mind that for the puzzle to
be solved, the blank space needs to be in the lower right corner—it doesn’t
suffice for the numbers to be in order. A similar but more complicated
argument can be made to show that half the configurations in the fifteen-tile
puzzle are also unsolvable.

We therefore make the design decision to write randomizeTiles so that
it randomly slides tiles around. This can be accomplished by the following
code:

public void pushRandomTile(){

int row = (int) (Math.random() * size);

int col = (int) (Math.random() * size);

pushTile(row, col);

}

public void randomizeTiles(){

for(int i = 0; i < 100; i++){

pushRandomTile();

}

}

The only question you are likely to have about this code is, “why 100?”
The answer is that it seemed like a reasonable number: big enough to do a
pretty good job of scrambling, while not so large as to take a long time. It



15.2. EVENT-DRIVEN GRAPHICAL USER INTERFACE APPS 17

would be fine to change it if you want to make a different trade-off. At any
rate, to see how long it does take on your computer, you’ll need to provide
a button to activate it:

Exercise 15.2

Provide a “Randomize” button, by doing the following:

a. Write a RandomizeActionListener class, similar to
InitializeActionListener, but which invokes the
randomizeTiles method.

b. Add a “Randomize” JButton to the controlPanel with a
RandomizeActionListener.

We’ll see a rather different program in the application section at the end
of the chapter. For now, let’s stick close to home and do another puzzle
that involves a square grid of JButtons. The physical version of this puzzle
is played with a square grid of pennies, initially all head side up. At each
move you can flip any penny over, but then also have to flip over the four
neighboring ones (not counting the diagonal neighbors). If the penny you
flipped was on an edge of the grid, so that it is missing a neighbor, or in
a corner, where it misses two neighbors, you just flip the neighbors that it
does have. As with the sliding tile puzzle, the goal is to do a bunch of moves
to scramble the grid up, and then try to get back to the starting position. If
you want to make the puzzle relatively easy, you might want to change size

from 4 to 3; if you like challenge, you might up it to 6.

Exercise 15.3

Change the puzzle app to this new puzzle, by making the follow-
ing changes:

a. Get rid of the blankRow and blankCol instance variables,
and in their place add two new instance variables of type
String, called heads and tails, each set equal to an ap-
propriate string. The strings you choose needn’t have any
resemblance to coins, and it is best if the two are visually
very distinct, for example heads = "Flip!" and tails =

"".

b. Change the initializeTiles method to set the label of all
the buttons to heads.

c. Add a new method, flip, which takes a JButton as an ar-
gument and changes its label. If the current label is heads,
it should change to tails, and vice versa.
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d. Change the pushTile method to flip the JButton in the
pushed position, and also flip each of its four neighbors,
provided that they exist.

15.3 Concurrency

In the introduction to this chapter, we defined a concurrent system as one
in which multiple activities go on at once, but we didn’t say anything about
why anyone would want to build such a system. You might think that the
answer is to get a computation done faster, by doing multiple subproblems
simultaneously. This can indeed be a motivation for concurrency, but it
is not the most important one in practice. To start with, most “concur-
rent” computer programs don’t truly carry out their multiple activities at
the same time; instead, the computer switches its attention back and forth
between the activities, so as to give the impression of doing them simulta-
neously. This is because a truly concurrent computation would require the
computer hardware to have multiple processors; although some systems have
this feature, many don’t. On a single-processor computer, all the activities
necessarily have to take turns being carried out by the single processor. At
any rate, concurrency has far more fundamental importance than just as a
way to (maybe) gain speed. Why? Because the world in which the computer
is embedded is concurrent:

• The user is sitting in front of the computer thinking all the while the
computer is computing. Maybe the user decides some other computa-
tion is more interesting before the computer is done with the one it is
working on.

• Computers today communicate via networking with other computers.
A client computer may well want to do other computations while wait-
ing for a response from a server computer. A server, in turn, may well
want to process requests it receives from clients, even if it is already
busy doing work of its own, or handling other clients’ earlier requests.

In other words, the primary motivation for concurrent programming is be-
cause a computer needs to interact with outside entities—humans and other
computers—who are naturally operating concurrently with it.

In this section we’ll see how to write a concurrent program, and some of
the interesting issues that arise from interactions between the concurrently
executing parts of the program. To illustrate our points, we’ll use some
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further variations on the sliding 15-tile puzzle program from the previous
section. The basic premise is that the puzzle isn’t challenging enough for
some users, so we’re going to add a new twist, which requires the user to
stay alert. Namely, the computer will occasionally slide the tiles on its own,
without the user doing anything. We call this the “poltergeist” feature,
because it resembles having a mischievous invisible spirit (i.e., a poltergeist)
who is playing with your puzzle, and thereby with your mind.

In broad outline, it seems relatively obvious how to program a poltergeist
into the puzzle. We’ll just add a third button to the control panel after the
“Initialize” and “Randomize” buttons, with some appropriate label (maybe
“Mess with me”), and an ActionListener that when the button is pushed
goes into an infinite loop where each time around the loop it pushes a random
tile.

The one big problem with this plan is that when the user pushes a but-
ton and the ActionListener is notified, the user interface goes dead until the
ActionListener’s actionPerformed method has finished responding. De-
pending on how fast your computer is, you may have noticed this with the
“Randomize” button. If not, you could try the experiment of increasing how
many random pushes it does from 100 to some larger number, say 500. You
should be able to notice that no additional button pushes get responded to
until all the random sliding around is done. Thus a button that didn’t loop
100 or 500 times, but instead looped forever, would never let the user push
any tiles of their own. That defeats the whole point of the poltergeist—the
point is to have it sliding tiles while the user slides them too.

Thus, we need the program to be truly concurrent: one part of the
program should loop forever, sliding tiles randomly, while another part of
the program should continue to respond to user interaction. Rather than
speaking of “parts” of the program, which is rather vague, we’ll use the
standard word: threads. One thread will do the random pushing, while the
original main thread of the program continues handling the user’s actions.
Thus our program will now be multi-threaded.

Rather than attempting a precise definition of threads, let us instead
suggest that you think of them as independently executing strands of com-
putations which can be braided together to form a concurrent program. This
description implies a different model of computation from the one presented
in chapter 11, where the computer followed a single strand of execution de-
termined by a program’s SLIM instructions. In our new multi-threaded case,
you can still follow linearly along any one strand and see the instructions
one after another in their expected sequence. However, if you look not at



20 CHAPTER 15. JAVA SWING, UML, AND CONCURRENCY

the one strand but at the entire braid, you’ll see the instructions from the
various strands mingled together. If you are wondering how the computer
can mingle different instruction sequences this way, we congratulate you.
You should indeed be wondering that. We’d like to answer the question,
and for our own students we do—but in a later course. We unfortunately
don’t have the time or space here.

From our perspective, however, it is enough to note that the Java lan-
guage requires a specific model of concurrency from its implementations.
To be more specific, Java implementations must support the class Thread,
which allows the creation and simultaneous execution of concurrent threads
of computation. As you will soon see, even though the operations involving
threads are designed and specified well in Java, the very nature of concur-
rency gives rise to new and interesting problems not encountered in single-
threaded applications. The Java language specification gives the implemen-
tation considerable flexibility with regard to how it mingles the threads of
execution—different implementations might take the same strands and braid
them together in different ways. This will be one of the reasons why we’ll
need to marshal our intellectual tools so that we can keep things simple
rather than succumbing to potential for complexity.

Fifteen puzzle, version 5

We create our poltergeist by defining a subclass of Thread called
PoltergeistThread. The only Thread method we need to override is run,
which tells what the thread does when it executes. Here then is our definition
of the class PoltergeistThread:

package edu.gustavus.mcs178.npuzzle.v5;

public class PoltergeistThread extends Thread {

private Puzzle puzzle;

public PoltergeistThread(Puzzle puzzle) {

this.puzzle = puzzle;

}

public void run() {

try {
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while(true) {

Thread.sleep(1000); // 1000 milliseconds = 1 second

puzzle.pushRandomTile();

}

} catch (InterruptedException e) {

// If the thread is forcibly interrupted while sleeping,

// an exception gets thrown that is caught here. However,

// we can’t really do anything, except stop running.

}

}

}

The one part we hadn’t warned you about in advance is that rather than just
madly looping away at full speed, pushing random tiles as fast as it can, the
poltergeist instead sleeps for one second between each random push. This
is important: otherwise the user still wouldn’t have any real chance to do
anything. Therefore, we’ve programmed in a one-second delay using sleep,
a static method in the Thread class. The only nuisance with using sleep is
that it can throw an InterruptedException, so we have to be prepared to
catch it. This exception gets thrown if some other thread invokes an opera-
tion that interrupts this thread’s sleep. That never happens in our program,
but we’re still required to prepare for the eventuality. This requirement that
we include a catch arises because the run method’s declaration doesn’t list
any exceptions that might be thrown out of it, and the Java system interprets
this as a claim that none will be. It therefore requires us to back this claim
up by catching any exceptions that might be thrown by other procedures
that run calls, such as the InterruptedException that Thread.sleep can
throw.

Here is the PoltergeistActionListener class, which responds to a push
of the poltergeist button by creating a new PoltergeistThread object and
telling it to start running:
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package edu.gustavus.mcs178.npuzzle.v5;

import java.awt.event.ActionEvent;

import java.awt.event.ActionListener;

public class PoltergeistActionListener implements ActionListener {

private Puzzle puzzle;

public PoltergeistActionListener(Puzzle puzzle) {

this.puzzle = puzzle;

}

public void actionPerformed(ActionEvent e) {

new PoltergeistThread(puzzle).start();

}

}

Note that the actionPerformed method creates a new PoltergeistThread

object and then calls the start method on the newly created object. This
is where the concurrency happens: the start method immediately returns,
so that the main thread can go on its way, processing other button presses
from the user. However, although the start method has returned, the new
PoltergeistThread is now off and running separately.

Assuming you add the appropriate JButton to the controlPanel, you
now have an program that can (if the user chooses) go into poltergeist mode,
where the tiles slide around on their own sporadically. The only problem
is, the program is a bit buggy. We’ll spend much of the rest of this section
explaining the bug, and what can be done about it.

Exercise 15.4

Even a buggy program is worth trying out. Add a JButton to
the ControlPanel for firing up a poltergeist, and try it out.

Recall that different Java implementations can braid the same strands of
a multi-threaded program together in different ways. Therefore, we can’t be
sure what behavior you observed when you ran the program. The chances
are good that it behaved fine, which may leaving you wondering why we
called the program buggy. The problem is this: what happens if just as the
poltergeist is sliding a tile, the user chooses to push a button too? Normally
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one or the other will get there first, and be already done with the sliding
before the other one starts. In this case, all is well. But if by an amazingly
unlucky coincidence of timing one starts sliding a tile while the other is still
doing so, then interesting things happen. Our main focus in this section will
be on how you can design a program such that timing-related bugs like this
one can’t possibly occur, rather than merely being unlikely. However, be-
cause it is worthwhile to have some appreciation of the kind of misbehaviors
we need to prevent, we’ll first take some time to look at how we can provoke
the program to misbehave.

There are two ways to experimentally find out some of the kinds of in-
teresting behavior that can occur. One is to click the poltergeist button and
then click away on the other buttons a lot of times until you get lucky and hit
the timing just right. (Or maybe we should say until you get unlucky and hit
the timing just wrong.) The problem with this approach is that you might
get a repetitive strain injury of your mouse finger before you succeeded. So,
we’ll let you in on the other approach, which exploits a special feature of
the program: you can have more than one poltergeist. If you think about
it, clicking on the poltergeist button creates a new PoltergeistThread and
starts it running. Nothing checks to see whether there already is one run-
ning. So, if you click the button again, you get a second PoltergeistThread,
concurrent with the first one and the user. A few clicks later you can have
half a dozen poltergeists, all sliding away at random. Now you just sit
back, relax, and wait for something interesting to happen when one of the
poltergeists happens to slide a tile while another is.

When we tried this experiment, the first interesting thing that happened
was that the number of blank tiles gradually started going up. (Initially
there was just one, of course.) Occasionally, though much less frequently,
the same number appeared on more than one tile. After a while there were
just a few numbered tiles left, and mostly blanks. The final interesting thing,
which happened after most of the tiles were blank, was that we got error
messages from the Java system telling us that some of the array references
being done in pushTile were out of bounds. In other words, one of the array
indices (row or column) was less than 0 or greater than 3.

Looking at the code, it appears at first that none of these problems
should occur. For example, consider the following argument for why our
array references should never be out of bounds: The row and column being
pushed on are necessarily always in the range from 0 to 3. The blank row and
blank column should also always be in this range. Why? Because they are
initially, and the blank spot only ever moves from where it is one position at a
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time towards the tile being pushed, until it reaches that position. Therefore,
since it starts at a legal position, and moves one space at a time to another
legal position, it will always be in a legal position, and all the array accesses
will always be in bound—except that they aren’t!

The flaw in our reasoning is where we said that the blank position only
moved one space at a time, stopping at the destination position. Suppose
two threads both push the tile that is immediately to the right of the blank
spot. Both check and find that the blank column is less than the destination
column. Then both increment the blank column. Now the blank column has
increased by two—shooting right passed where it was supposed to go.

This kind of anomaly, where two threads interact in an undesirable fash-
ion when the timing is just wrong, is known as a race. Such errors can occur
when two independent threads are accessing the same data (in our case, the
instance variables in the Puzzle object itself) and at least one of them is
modifying it. We should point out that our explanation of how the array
reference errors might occur is just one possible scenario. The Java language
specification provides sufficient freedom in how the threads are intermingled
that lots of other possibilities exist as well.

Exercise 15.5

Having given a plausible explanation for the out of bound array
references, let’s consider the other two bugs we found:

a. Explain how two threads could interact in a manner that
would result in two blank tiles.

b. Explain how two threads could interact in a manner that
would result in two tiles with the same number.

As you can see, even detecting a race can be difficult; trying to under-
stand them can be downright perplexing. Therefore, one of our main goals
in this section will be to show you a way to avoid having to reason about
races, by ensuring that they can’t occur. It is incredibly important to make
sure that the races can’t occur, because you can never rely on experimen-
tally checking that they don’t occur. Since a race by definition depends on
the timing being just wrong, you could test your program any number of
times and never observe any misbehavior, and still have a user run into the
problem.

This is not just a theoretical possibility: real programs have race bugs,
and real users have encountered them, sometimes with consequences that
have literally been fatal. For example, there was a race bug in the software
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used to control a medical radiation-therapy machine called the Therac 25.
This machine had two modes of operation: one in which a low-energy beam
directly shined on the patient, and one in which the beam energy was rad-
ically increased, but a metal target was put between the beam source and
the patient, so that the patient received only the weaker secondary radia-
tion thrown off by the metal when struck by the beam. The only problem
was that if a very quick-typing therapist set the machine to one mode, and
then went back very quickly and changed it to the other mode, the machine
could wind up with the beam on its high power setting, but the metal not
in the way. This caused horrifying, and sometimes fatal, damage to several
patients; the descriptions are too gruesome to repeat. The problem causing
this was a race condition between two concurrent threads; it only showed
up for the very fastest typists, and only if they happened to carry out a
particular action (rapidly changing the operating mode). Because of this, it
not only wasn’t found in initial testing, but also showed up so sporadically
in actual use that the service personnel failed to track the problem down
and allowed the machine to continue causing (occasional) harm.

Not every concurrent system has the potential to kill, but many can
at least cause serious financial costs if they fail unexpectedly in service.
Therefore, it is important to have some way to avoid race conditions, rather
than just hoping for the best. Luckily we’ve already taught you the key to
designing race-free concurrent systems: representation invariants.

Recall that a representation invariant of a class is some property which
is established by the class’s constructor and preserved by all of the class’s
mutators, so that all of the class’s operations can count on the property being
true (by induction). For example, if we ignore the concurrency muddle for
the moment, the Puzzle class has the following representation invariant:

Puzzle representation invariant: Any instance of the
Puzzle class will obey the following constraints at the time each
method is invoked:

• 0 ≤ blankRow < size

• 0 ≤ blankCol < size

• The JButton stored in buttons[blankRow][blankCol] has
the empty string as its label.

• The remaining size2 − 1 JButtons are labeled with the
numerals from 1 to size2 − 1 in some order.
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The whole point of having such a representation invariant is that it frees
us from having to reason about what specific mutations are done in what
order, because we have an inductive guarantee that holds over all sequences
of mutations.

This ability to know what is true over all sequences, so that we don’t have
to consider each individual sequence, is exactly what we need for dealing with
concurrency. Consider, for example, a simple program with two threads,
each of which performs two mutations. The first thread does mutations a

and then b, while the second thread does A and then B. Then even in this
very simple concurrent system, there are six possible interleaved sequences
in which the mutations might occur: abAB, aAbB, aABb, AabB, AaBb,
and ABab. Would you really want to check that each of these six orders
leaves the program working? And if six hasn’t reached your pain threshold,
consider what happens as the number of threads or mutations per thread
grows much beyond two. So clearly it is a big win to be able to show that
the program is correct under any ordering, without considering each one
individually.

However, having representation invariants that we can inductively rely
on to be true after any sequence of mutator operations only helps us if we
have some way of knowing that the program’s execution is some sequence
of mutator operations. In the case of the Puzzle program, the two mutator
operations that are in charge of maintaining the invariants are pushTile

and initializeTiles. Therefore, we need some way of knowing that the
Java system will invoke those operations in some sequential fashion, rather
than jumbling together parts of one invocation with parts of another. The
reason why individual parts of the mutators can’t be jumbled is that they
don’t preserve the invariant; for example, even if the invariant holds before
executing blankCol++, it won’t hold afterwards. So, what we need to do is
identify for the Java system the invariant-preserving units that it needs to
treat as indivisible, i.e, that it is not allowed to intermingle.

Java provides the ability to mark certain methods as indivisible in this
sense, using the modifying keyword synchronized. Since initializeTiles
and pushTile are the two Puzzle mutators that preserve the invariant (if left
uninterrupted), we use the following code to mark them as synchronized:

public synchronized void initializeTiles(){

// body same as before

}
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// (continued)

public synchronized void pushTile(int row, int col){

// body same as before

}

With these keywords in place, the Java system won’t let any thread start
into one of these methods if another thread is in the midst of one of them
on the same Puzzle. Instead, it waits until the other thread has left its
synchronized method. One way to envision this is that each object has a
special room with a lock on the door. There is a rule that synchronized

methods may only be performed in that room, with the door locked. This
forces all threads that want to perform synchronizedmethods to take turns.

In the Puzzle class, the only methods that directly rely on the represen-
tation invariant are the two mutator operations that are also responsible for
preserving the invariant. In some other programs, however, there are classes
with methods that rely on the invariant but play no active role in preserving
it, because they perform no mutation. (They just observe the object’s state,
but don’t modify it.) These methods need to be synchronized too, in order
to ensure that they only observe the object’s state after some sequence of
complete mutator operations has been performed, rather than in the middle
of one of the mutator operations.

As you can see, freedom from races is the result of teamwork between
the programmer and the Java system: the programmer uses a representation
invariant to ensure that all is well so long as synchronizedmethods are never
executing simultaneously in different threads, and the Java system plays its
part by respecting those synchronized annotations.

Exercise 15.6

Add the keyword synchronized at the two places indicated
above and verify experimentally that these race conditions no
longer occur.
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Nested calls to synchronized methods and deadlock

You might wonder what happens if one synchronized method invokes
another one. In terms of our analogy, a thread that is currently inside a
locked room is trying to do another operation that requires being inside a
locked room.

In Java, if the second method is on the same object, there is no problem
at all. The thread is already inside that object’s locked room, and so can
go ahead with the nested synchronized method. Moreover, when it is
done with that inner method, it doesn’t make the blunder of unlocking the
door and leaving the room. Instead, it waits until the outer synchronized
method is done before unlocking.

How about if the inner synchronized operation is on a different object?
Our physical analogy of locked rooms starts to break down here. The thread
manages to stay inside its current locked room while waiting for the other
room to become available. Then without unlocking the room it is in, it
locks the new room and is (somehow) simultaneously in two locked rooms.

There is a real pitfall here for unwary programmers. Suppose one thread
is inside the locked room for object A, while another is inside the locked
room for object B. Now the first thread tries to invoke a synchronized

method on B while the second thread tries to invoke a synchronized

method on A. Each thread waits for the other room to become available.
But since each is waiting with its own room locked, neither room ever will
become available—the two will simply wait for each other forever. This
situation, in which threads cyclically wait for one another, is known as
deadlock.
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Figure 15.4: Compound interest simulation app

15.4 An application: simulating compound inter-

est

Imagine that you have just started work for a small company that produces
Java programs for use in education. One of the company’s programs is used
to illustrate how compound interest works; it is shown in figure 15.4. This
program simulates the passage of years at a rate of one year per second,
displaying information in the scrolling area that occupies the main portion
of the program. The figure is just a snapshot, showing what it looked like
after 22 simulated years had passed, but keep in mind that it keeps getting
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updated. Meanwhile the top “control panel” portion of the program has
three controls. One is a checkbox labeled “Run” that can be used to pause
the simulation or resume it. (The program actually starts in the paused
state; the box was clicked on 22 seconds prior to the snapshot in the figure.)
The other two controls allow the initial amount of money and the interest
rate to be changed. If the user changes either of these, the output area is
cleared and the simulation is reset back to year 0. The program is included
on the publisher’s website, so you can try it out.

Like many junior programmers, you have been assigned to fix bugs in
the company’s existing programs, rather than writing a new program from
scratch. Occasionally you may get to add a new feature.

The boss comes to you with an interesting problem concerning the
compound-interest simulation program. Although it generally seems to work
fine, a few customers have reported seeing it occasionally produce bizarre
behavior, which they have never managed to replicate. The common thread
is that after changing one of the values (initial amount or interest rate)
while the simulation was running, the customers report seeing output on
the screen that was clearly wrong, or was missing some years. Your boss
normally wouldn’t care that a few customers were claiming to occasionally
see strange things, but it happens that some of them are very important
clients that the company is trying to make a good impression on, and right
now the reliability of the program is in question. The boss tells you your job
is to get to the bottom of the matter and restore the company’s reputation
for rock-solid quality.

Since you have had the benefit of learning from a textbook that intro-
duced concurrent programming, you immediately blurt out to the boss that
you are sure—without even looking at the code—that you know what the
problem is. Obviously the program must have two threads, one to simulate
the passage of years and one to respond to the user interface (much like
in the puzzle with the poltergeist). Clearly whatever boneheaded program-
mer preceded you at the company didn’t bother to put “synchronized”
where he should have, and so there is a race condition that causes problems
when the user makes a change just at the instant a year is being simulated.
You say that you can fix the problem in a few minutes by just sticking
“synchronized” in front of some methods.

The boss is not thrilled. This may be partially an emotional response,
given that you just called his teenaged son a bonehead. However, mostly
it is just good, cautious business sense. Right now, the program appears
to work when tested. When you add the synchronized keywords, it still
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will appear to work when tested. How can the boss confidently tell the VIP
clients that you definitely have gotten to the bottom of the matter and solved
their mysterious problem? How can he know that your explanation accounts
for their symptoms when the symptoms aren’t even showing up in testing in
the first place? How can he be sure the symptoms won’t keep showing up
for the client?

Therefore, you agree on a more careful plan of work:

1. You will examine the code and come up with a few specific race scenar-
ios that would exhibit the kind of behavior the clients have mentioned.
That is, you’ll map out exactly what order things would have to hap-
pen in to make the symptoms show up.

2. Then you’ll rig the program so that these race conditions can be made
to repeatably happen, rather than just once in a blue moon, so as to
show your boss that they are real. You’ll do this by introducing extra
time-delay sleeps at the critical points, so that rather than having to
change one of the values at just exactly the wrong moment, you’ll have
a much bigger window of opportunity.

3. Then you’ll put the synchronized keywords in that you are convinced
will solve the problem.

4. Finally, you’ll show that even with the extra time delays that you put
in to make the races easy to trigger, the symptoms no longer show up
in your fixed version.

If your theory is correct, then the problem is definitely localized within
the CompoundingThread class, which provides the guts of the simulation; the
other classes just provide the user interface, and seem quite innocent. From
your perspective, all you need to know about them is how they relate to the
CompoundingThread class:

• The main program class, Compounder, provides two methods for man-
aging the scrolling output area: outputLine (for adding an additional
line of output) and clearOutput (for clearing the area).

• The user interface calls two of the CompoundingThread’s methods,
setInitialAmount and setInterestRate, to convey this informa-
tion in, and also uses enable and disable methods, much like the
poltergeist’s.

Here is the code for the class in question:
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package edu.gustavus.mcs178.compounder;

public class CompoundingThread extends Thread {

private boolean enabled;

private double initial, current, multiplier;

private int year;

private Compounder c;

private java.text.NumberFormat fmt;

// Invariant:

// (1) current = initial * (multiplier raised to the

// year power)

// (2) year also specifies how many lines of output c has

// gotten since it was last cleared, corresponding to

// years from 0 up through year-1.

public CompoundingThread(Compounder comp) {

c = comp;

fmt = java.text.NumberFormat.getCurrencyInstance();

}

synchronized private void waitUntilEnabled() throws InterruptedException {

while(!enabled){

wait();

}

}

synchronized public void disable() {

enabled = false;

}

synchronized public void enable() {

enabled = true;

notify();

}

// (continued)
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public void run() {

try{

while(true) {

Thread.sleep(1000);

waitUntilEnabled();

doYear();

}

} catch (InterruptedException e) {

// ignore, but stop running

}

}

private void doYear() {

c.outputLine("After " + year + " years, " + fmt.format(current));

year++;

current *= multiplier;

}

public void setInitialAmount(double amount) {

initial = amount;

initialize();

}

public void setInterestRate(double rate) {

// note that a rate of 5% (e.g.) would be .05, *not* 5

multiplier = 1 + rate;

initialize();

}

private void initialize() {

current = initial;

year = 0;

c.clearOutput();

}

}

The most important thing to note about this code is that we maintain
an instance variable enabled in that keeps track of whether the thread is
enabled, and we needed to synchronize the procedures waitUntilEnabled(),
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and disable(), and enable() to avoid race conditions.
Although we don’t describe the other class files here, they are included

in the software included with the associated lab, and we encourage you
to peruse those files. We note that we did add one other Swing class, a
JCheckBox to the main class Compunder, which allows you to turn the thread
off and on using disable(), and enable(). You should read the code in
Compunder and look at the Java documentation for JCheckBox to see how it
works.

Finally, CompoundingThread uses a fancy library class called
java.text.NumberFormat to format the current amount of money for
the output line. For example, if current is 19.5, then the expression
fmt.format(current) would evaluate to the string "$19.50". Not only
does this take care of details like making sure there are two digits after the
decimal point, it also has an additional big win: it automatically adjusts
to other currencies that are used elsewhere in the world. (For more details,
look up the documentation for this library class.)

Exercise 15.7

As an important preparation for figuring out the race conditions,
you need to understand the class’s invariant. Assume for the
moment that there is no concurrency, and write out explanations
of how the invariant is preserved by each of the three methods
doYear, setInitialAmount, and setInterestRate.

Exercise 15.8

Now come up with at least three different specific misbehaviors
that could result from a race between doYear and one of the
other methods. Explain exactly what order the events would
have to occur in. For example, you might say that right between
the user interface thread setting the year to 0 and clearing the
output, the simulation thread might slip in and do a complete
invocation of doYear. Also, explain for each scenario what the
user would see. Try to come up with at least three scenarios with
different symptoms from one another.

Exercise 15.9

Now make each of your misbehaviors happen. Rather than de-
veloping the knack of getting the timing just perfect, you should
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use Thread.sleep to open up a great big window of opportunity.
For example, if you put a several second sleep between setting
the year to 0 and clearing the output, it is a sure thing that at
least one doYear will slip into that gap. (Provided, of course,
that the simulation is enabled to run, rather than being paused
in the disabled state.)

Exercise 15.10

Now add the synchronized keyword to the appropriate methods,
and verify that the misbehaviors have all gone away, even when
you use Thread.sleep to give them ample opportunity to show
up.

Your boss is sufficiently impressed with your work to let you add a new
feature customers have been requesting. Many people aren’t as interested in
answering questions like “if I invest $1000 now, how much will I have when
I retire” as they are in questions like “if I invest $1000 each year from now
until I retire, how much will I have?” So, you are to add a feature to the
program so that it has two fields for monetary input: the initial amount,
and the additional amount to add each year.

Of course, this gets you into the user-interface part of the program, which
you’ve been able to ignore until now. The most relevant portions are the
InitialAmountField class and the part of the Compounder class that creates
the initial amount field. You’ll be able to add the new field just by following
that example, since it is another currency amount field.

The part of the Compounder class’s constructor that creates the initial
amount field and adds it to the control panel is as follows:

controlPanel.add(new Label("Initial amount:", Label.RIGHT));

controlPanel.add(new InitialAmountField(1000.00, compThread));

The first line adds a Label, which is just a fixed chunk of text. The ar-
gument Label.RIGHT indicates that it should be positioned to the far right
end of the space it occupies, which looks correct given that it ends with
a colon and is followed by the field in which the amount is entered. The
InitialAmountField itself follows. The first argument to its construc-
tor is the value the field should start out with (1000.00), pending any
modification by the user, while the second argument, compThread, is the
CompoundingThread that should receive setInitialAmount notifications.

Here’s the InitialAmountField class:
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public class InitialAmountField extends FormattedField {

private CompoundingThread compThread;

public InitialAmountField(double initialValue, CompoundingThread ct){

super(10, java.text.NumberFormat.getCurrencyInstance());

compThread = ct;

Double value = new Double(initialValue);

setValue(value);

valueEntered(value);

}

public void valueEntered(Object value){

compThread.setInitialAmount(((Number) value).doubleValue());

}

}

There is some fairly tricky stuff in this little class, and although you don’t
really need to understand it to make another one just like it, we can’t stand
to pass up an opportunity for explanation.

The superclass, FormattedField, handles the general problem of being
a text-entry field that has some specified special format—in this case, the
format of a currency amount. Its constructor needs to be told how wide a
field is desired and what format should be used; those are the two arguments
in

super(10, java.text.NumberFormat.getCurrencyInstance());

The format object that is passed in as the second argument here formats
numbers as currency amounts, but in general it can specify formats for all
sorts of things—for example, dates as well as numbers. Therefore, the inter-
face of the FormattedField class needs to be very general. In particular, its
setValue method takes an arbitrary Object as an argument, so as not to be
limited to numbers. The only problem is that the initialValue, which is
a double, isn’t an Object. Any instance of any class is an Object, since all
classes are descended from Object. However, double isn’t a class (nor are
int, boolean, or the other basic numeric and character types). So, we need
to make an Object that holds the double inside; this is what the Double

class is for. We make a Double called value holding the initialValue, and
we pass that Double object into setValue.
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When the user types a new value into the field, the FormattedField

class responds by invoking the valueEntered method to process this newly
entered value. We also do this with the initial value, so that it gets handled
the same way. Again, because FormattedField needs to work for all kinds
of data, it passes an Object to valueEntered. Our valueEntered method
needs to recover the actual double value from that Object. The first thing
we do is to declare that we know the Object must be a Number. (The Number
class is the superclass of Double. It has other subclasses that similarly
hold other kinds of numbers.) We do this with the notation (Number),
which another cast, much like the (int) we saw earlier. Then we invoke the
Number’s doubleValue method to retrieve the actual value as a double, and
finally notify the CompoundingThread by invoking its setInitialAmount

method.

Exercise 15.11

Add a new labeled field for the annual contribution, and ar-
range that it gets passed to the CompoundingThread. Modify
the CompoundingThread so that it incorporates this additional
amount each year.


