Homework 1

1. Recall that if $\mathbf{A}=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ and $\mathbf{B}=\left[\begin{array}{ll}e & f \\ g & h\end{array}\right]$ are any two matrices, then their product $\mathbf{A} \cdot \mathbf{B}$ is

$$
\mathbf{A} \cdot \mathbf{B}=\left[\begin{array}{ll}
a e+b g & a f+b h \\
c e+d g & c f+d h
\end{array}\right]
$$

Recall also that we define matrix exponentiation by declaring $\mathbf{A}^{1}=\mathbf{A}$ and for all $n \geq 1$, we declare $\mathbf{A}^{n+1}=\mathbf{A} \cdot \mathbf{A}^{n}$.
Let \mathbf{F} be the matrix $\left[\begin{array}{ll}0 & 1 \\ 1 & 1\end{array}\right]$. Show by mathematical induction that

$$
\mathbf{F}^{n}=\left[\begin{array}{cc}
f_{n-1} & f_{n} \\
f_{n} & f_{n+1}
\end{array}\right]
$$

for all $n=1,2, \ldots$, where $\left\langle f_{0}, f_{1}, f_{2}, \ldots,\right\rangle$ is the Fibonacci sequence.
2. (a) Find a closed-form formula for

$$
\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\cdots+\frac{1}{2^{n}}
$$

by examining the values of the expression for small values of n.
(b) Prove your formula correct by mathematical induction.
3. Each square of a 1-by- n chessboard is to be colored red, green, or blue so that no two adjacent squares are colored red. Let c_{n} be the number of ways this can be done. Give a recurrence for c_{n}. Give all necessary base cases and carefully explain how you derive the formula for the recursive case.
4. An arithmetic sequence is a sequence of the form $\langle a, a+d, a+2 d, \ldots, a+(n-1) d, \ldots\rangle$. Let $S(n)$ be the sum of the first n terms of an arithmetic sequence.
(a) Give a closed-form formula for $S(n)$.
(b) $-10-6-2+2+6+\cdots+102=$?
5. A geometric sequence is a sequence of the form $\left\langle a, a r, a r^{2}, \ldots, a r^{n-1}, \ldots\right\rangle$. Let $T(n)$ be the sum of the first n terms of a geometric sequence.
(a) Give a closed-form formula for $T(n)$ if $r=1$.
(b) Let $r \neq 1$. Show by mathematical induction that

$$
T(n)=a \frac{1-r^{n}}{1-r} \quad \text { or, equivalently } \quad a \frac{r^{n}-1}{r-1} .
$$

(c) $3 / 5+3 / 25+3 / 125+\cdots+3 / 25^{10}=$?
6. Suppose you begin with a pile of n stones and split this pile into n piles of one stone each by successively splitting a pile of stones into two smaller piles. Each time you split a pile you multiply the number of stones in each of the two smaller piles you form, so that if these piles have r and s stones in them, respectively, you compute rs. Show that no matter how you split the piles, the sum of the product computed at each step equals $n(n-1) / 2$. (Hint: Use strong induction.)

