Homework 2

1. Prove that the hockeystick identity

$$
\sum_{k=0}^{r}\binom{n+k}{k}=\binom{n+r+1}{r}
$$

is true for all positive integers n and r.
2. The notation $\binom{x}{k}$ can be generalized to cover all real x and all integer k as follows

$$
\binom{x}{k}= \begin{cases}x^{\underline{k}} / k! & \text { if } k \text { is a nonnegative integer } \\ 0 & \text { if } k \text { is a negative integer. }\end{cases}
$$

(a) Determine $\Delta\binom{x}{k}$ where x is the variable and k is an integer constant.
(b) Calculate (i) $\binom{100}{3}$, (ii) $\binom{-4}{5}$, (iii) $\binom{1.5}{3}$.
3. Apply the difference operator to each of the following functions. Simplify your answer as much as possible.
(a) $f(x)=3 x^{\underline{3}}+4 x^{2}-5 x^{\underline{1}}-6$
(b) $g(x)=x 2^{x}$
(c) $h(x)=\frac{1}{(x+3)(x+2)(x+1)}$
4. Fill in this table of forward differences $\Delta^{k} f(x)$ for $k=1,2,3$ as much as possible.

x	$f(x)$	$\Delta f(x)$	$\Delta^{2} f(x)$	$\Delta^{3} f(x)$
0	-1			
1	2			
2	11			
3	32			
4	71			
5	134			
6	227			
7	356			
8	527			

If f is known to be a polynomial of degree at most 3 , what is that polynomial?
5. Express $5 x^{4}-4 x^{3}-3 x^{2}+2 x+1$ as a factorial polynomial, i.e., find coefficients A, B, C, D, and E such that

$$
5 x^{4}-4 x^{3}-3 x^{2}+2 x+1=A x^{4}+B x^{3}+C x^{\underline{2}}+D x^{\frac{1}{-}}+E
$$

in two ways:
(a) by using a table of Stirling numbers of the second kind, and
(b) by Horner's method.
6. Calculate $\Delta p(x)$ where $p(x)=5 x^{4}-4 x^{3}-3 x^{2}+2 x+1$, the polynomial of the previous problem.
(a) Express the answer as a factorial polynomial.
(b) Express the answer as an ordinary polynomial.

