Pumping Lemma for CFLs

Sipser Ch 2: p.125–129

Theorem (Pumping Lemma for Context-free Languages). Every CFL A has a pumping length p > 0 (depending on A) such that every string $s \in A$ with $|s| \ge p$ can be written as uvxyz such that |vy| > 0, $|vxy| \le p$, and $uv^ixy^iz \in A$ for all i = 0, 1, 2, ...

Proof. Choose a CFG $G = (V, \Sigma, R, S)$ in CNF for A. Let $p = 2^{|V|}$. Take any $s \in A$ of length $\geq p = 2^{|V|}$. Let T be a parse tree for s and let $T' = T - \{\text{leaves of } T\}$. Then T'is a full binary tree every node of which is labeled with a variable. Since T' has $\geq 2^{|V|}$ leaves, the height of T' is $\geq |V|$. Therefore, some variable X occurs at least twice on some longest root-to-leaf path in T'. By considering the path in the direction from leaf to root, we see that the tree rooted at the upper X has height $\leq |V|$. Thus $|vxy| \leq 2^{|V|} = p$. We have |vy| > 0 since T' is a full binary tree and every child of an internal node of T'yields some terminals, and the upper node labeled X is internal.

Let T_u be the tree rooted at the upper X and T_ℓ be the tree rooted at the lower X.

In T, replacing T_u by T_ℓ results in a parse tree for uv^0xy^0z .

In T, replacing T_{ℓ} by T_u results in a parse tree for uv^2xy^2z ; call the resulting tree T_2 . In T_2 , replacing T_{ℓ} by T_u results in a parse tree for uv^3xy^3z ; call the resulting tree T_3 . and so on and so forth.

This proves $uv^i xy^i z \in A$ for all $i = 0, 1, 2, \dots$

Example 1. $A_1 = \{ a^n b^n c^n : n \ge 0 \}$ is not context free.

Proof. Suppose A_1 is context free and let p be its pumping length. Consider $a^p b^p c^p \in A_1$ and write it as uvxyz as in the Pumping Lemma. We see that ≤ 1 distinct symbol occurs in v, for otherwise uv^2xy^2z would have ≥ 4 1-symbol sections, constradicting it being in A_1 . Similarly, ≤ 1 distinct symbol occurs in y. Thus, vy is missing at least a symbol, call it σ . (In fact, σ is either a or c.) Hence, uv^2xy^2z has too few σ 's to be in A_1 . \Box

Example 2. $A_2 = \{ a^n b^m a^n b^m : n, m \ge 0 \}$ is not context free.

Proof. As in previous example, let p be its pumping constant, choose $s = a^p b^p a^p b^p \in A_2$, and write it as uvxyz.

String vxy must straddle the midpoint of s. To see this, suppose vxy is totally contained in the first half of s. Then ba^pb^p would be a suffix of the second half of $t = uv^2xy^2z \in A_2$, contradicting $t \in A_2$. Similarly, vxy being totally contained in the second half of s is impossible.

We have $uv^0xy^0z = uxz \in A_2$ by the Pumping Lemma. Since vxy straddles the midpoint of s and string $vy \neq \varepsilon$, string uxz has the form $a^pb^ia^jb^p$ with i < p or j < p. Thus $uxz \notin A_2$, a contradiction.

Example 3. $A_3 = \{ww : w \in \{a, b\}^*\}$ is not context free.

Proof. If it were, then $A_3 \cap L(a^*b^*a^*b^*)$ would be a CFL. However, the language of this intersection is A_2 , which has just been shown not context-free, a contradiction.