Closure Properties of CFLs

Sipser Ch 2: Exercises 2.2, 2.15, 2.16, 2.18

Theorem. The CFLs are closed under \cup , \circ , and *.

Theorem. If P is a PDA and D is a DFA, then $L(P) \cap L(D)$ is a CFL.

Proof. Construct a PDA that simultaneously simulates P and D.

Question. Why does this construction fail when both P and D are PDA's? In the rest of this handout let $\Sigma = \{a, b, c\}$.

Lemma. Let

$$E = \{ w \in \Sigma^* : |w|_a = |w|_b = |w|_c \}.$$

E is not a CFL.

Proof. Suppose it were. Then $F = E \cap L(a^*b^*c^*)$ is a CFL. But $F = \{a^nb^nc^n : n \ge 0\}$ and we have already seen that F is not a CFL, a contradiction.

Theorem. The CFLs are not closed under intersection.

Proof. This is because E is the intersection of 2 CFLs:

$$E = \{ w \in \Sigma^* : |w|_a = |w|_b \} \cap \{ w \in \Sigma^* : |w|_b = |w|_c \}.$$

To show the RHS languages are CFL's, use PDAs.

Theorem. The CFLs are not closed under complement.

Proof. E is the complement of the CFL

$$\overline{E} = \{ w \in \Sigma^* : |w|_a \neq |w|_b \} \cup \{ w \in \Sigma^* : |w|_b \neq |w|_c \}.$$

To show the RHS languages are CFL's, note that $i \neq j$ means i < j or i > j. Another proof is to note that the language $SQ = \{ww : w \in \{0,1\}^*\}$ is not context-free; however, its complement is.