Formal Languages

Sipser Ch 0: p13-14; Ch 1: p44-45

Languages are our model for the data manipulated by computers.

Definitions. The term symbol (or letter) is undefined. An alphabet is a nonempty, finite set of symbols, e.g., letting $\Sigma=\{\mathrm{a}, \mathrm{b}\}$ we have Σ is the alphabet while a and b are symbols.

A string (or word or sentence) is a finite sequence (list) of symbols chosen from an alphabet, e.g., $\langle\mathrm{a}, \mathrm{b}, \mathrm{a}\rangle$, usually written as aba. (In the general formal language theory, infinite strings are allowed.) The length of a string w, denoted $|w|$, is the length of the sequence. The empty string, denoted ε, has length 0 . If $|w|=n$, we usually write w as $w_{1} w_{2} \ldots w_{n}$. For example, letting $w=$ aba, we have $w_{1}=w_{3}=\mathrm{a}$, and $w_{2}=\mathrm{b}$. For any string w and symbol a, we write $|w|_{a}$ to denote the number of times the symbol a occurs in string w. For example, $|\mathrm{aba}|_{\mathrm{a}}=2,|\mathrm{aba}|_{\mathrm{b}}=1$, and $|\mathrm{aba}|_{\mathrm{c}}=0$.

Let $x=x_{1} x_{2} \ldots x_{m}$ and $y=y_{1} y_{2} \ldots y_{n}$ be strings of length m and n respectively. The concatenation of x and y, written $x y$, is the string $x_{1} x_{2} \ldots x_{m} y_{1} y_{2} \ldots y_{n}$ of length $m+n$ that results from appending y to the end of x, e.g., concatenating back and bone gives backbone.

String concatenation is associative, and ε is the identity element. Therefore, strings form a monoid under concatenation.

If w is a string and n is a positive integer, we write w^{n} to mean the concatenation of n copies of w. The notation w^{0} is defined to be ε.

A string y is a substring (or subword) of string w if there exist strings x, z such that $w=x y z$. A string x is a prefix of string w if there exists a string y such that $w=x y$. A string y is a suffix of string w if there exists a string x such that $w=x y$. So by
definition an empty string is a substring, prefix, and suffix of any string; and any string is a substring, prefix, and suffix of itself. String x is a subsequence of string y if x can be obtained by striking out 0 or more symbols from y. For example bat is a subsequence of of habitat.

Let $w=w_{1} w_{2} \ldots w_{n}$ be a string of length n. By the reversal of w, notated w^{R}, we mean the string $w_{n} w_{n-1} \ldots w_{1}$. For example, star $^{R}=$ rats. A string w is a palindrome if $w^{R}=w$. Examples of palindromes are eve, madam, racecar, deified, rotator.

Given an alphabet Σ, we define Σ^{*} to be the set of all strings over Σ, e.g., for $\Sigma=\{\mathrm{a}, \mathrm{b}\}$ we have $\Sigma^{*}=\{\varepsilon, \mathrm{a}, \mathrm{b}, \mathrm{aa}, \mathrm{ab}, \mathrm{ba}, \mathrm{bb}, \mathrm{aaa}, \ldots\}$. The listing of strings here is in shortlex order (or string order or radix order), i.e., ordered like in a dictionary, except that a shorter string always precede a longer one.

Exercises.

1. Define $<$ for dictionary order (or lexicographic order) precisely.
2. Define $<$ for shortlex order (or string order, or radix order) precisely.
3. What is the position of the string $a b$, when the strings of $\{a, b\}^{*}$ are arranged in dictionary order? in shortlex order?

A language over the alphabet Σ is any subset of Σ^{*}. Here are some example languages.

1. The set of all strings with an odd number of a's.
2. The set of all palindromes.
3. The set of all strings of "balanced" left and right parentheses.
4. The set of all strings containing equal numbers of a's, b's, and c's.
5. The set of all binary strings that represent prime numbers.
6. The set of all graphs with a Hamiltonian cycle, where the graph is encoded as a string.
7. \emptyset and $\{\varepsilon\}$ are (different) languages

Remarks.

1. The subject matter of this course concerns languages and machines that recognize/compute them!
2. Finite languages are trivial.
3. A lone letter like a is ambiguous. It either represents a symbol or a string of length 1. Context decides which meaning is intended.
4. The concept of "string", "concatenation", "length of of string", "reversal of a string", etc., can be defined recursively as well.

Operations on Languages

Set Operations $\cup, \cap, \backslash, \triangle$, complement \bar{A} of a language A, etc.
Concatenation The concatenation of two languages A and B is $A B$, i.e., the set of all strings $x y$ where $x \in A$ and $y \in B$.

When precision is desired, concatenation is denoted by \circ, e.g., $x \circ y, A \circ B$.
Examples. Let $O=$ \{all strings of odd length $\}, E=\{$ all strings of even length $\}$, and $N=\{\mathrm{a}\}$. Then $O N=\{$ all strings of even length ending in a $\}, O E=O$, and $E^{2}=E$.

For any language A, language A^{0} denotes $\{\varepsilon\}$; languages A^{i} denotes $A A^{i-1}$ whenever $i>0$.

Kleene Closure $A^{*}=\bigcup_{i=0}^{\infty} A^{i}$. For example, $\emptyset^{*}=\{\varepsilon\}$. Note how this definition of * agrees nicely with our previous definition of * in Σ^{*} if we identify a string of length one with the symbol contained in it.

Positive Closure $A^{+}=\bigcup_{i=1}^{\infty} A^{i}$.

Exercises.

1. Is it true that $A^{+}=A^{*} \backslash\{\varepsilon\}$ for every language A ?.
2. Which of the 7 example languages A above have $A=A^{*}$?
3. Characterize languages A that satisfy $A^{*}=A^{+}$?
4. Describe these languages $A \emptyset, A\{\varepsilon\}, A \cup \emptyset, A \cup\{\varepsilon\}$.
5. The \cup and the o operators for languages are comparable to the + and the $*$ operators for numbers, respectively. What is the identity element for \cup ? for \circ ? What rules governing + and $*$ are also obeyed by \cup and \circ ?
