Formal Languages

Sipser Ch 0: p13–14; Ch 1: p44–45

Languages are our model for the data manipulated by computers.

Definitions. The term *symbol* (or *letter*) is undefined. An *alphabet* is a nonempty, finite set of *symbols*, e.g., letting $\Sigma = \{a, b\}$ we have Σ is the alphabet while a and b are symbols.

A string (or word or sentence) is a finite sequence (list) of symbols chosen from an alphabet, e.g., $\langle \mathbf{a}, \mathbf{b}, \mathbf{a} \rangle$, usually written as \mathbf{aba} . (In the general formal language theory, infinite strings are allowed.) The length of a string w, denoted |w|, is the length of the sequence. The empty string, denoted ε , has length 0. If |w| = n, we usually write w as $w_1w_2\ldots w_n$. For example, letting $w = \mathbf{aba}$, we have $w_1 = w_3 = \mathbf{a}$, and $w_2 = \mathbf{b}$. For any string w and symbol a, we write $|w|_a$ to denote the number of times the symbol a occurs in string w. For example, $|\mathbf{aba}|_{\mathbf{a}} = 2$, $|\mathbf{aba}|_{\mathbf{b}} = 1$, and $|\mathbf{aba}|_{\mathbf{c}} = 0$.

Let $x = x_1 x_2 \dots x_m$ and $y = y_1 y_2 \dots y_n$ be strings of length m and n respectively. The *concatenation* of x and y, written xy, is the string $x_1 x_2 \dots x_m y_1 y_2 \dots y_n$ of length m + n that results from appending y to the end of x, e.g., concatenating back and bone gives backbone.

String concatenation is associative, and ε is the identity element. Therefore, strings form a monoid under concatenation.

If w is a string and n is a positive integer, we write w^n to mean the concatenation of n copies of w. The notation w^0 is defined to be ε .

A string y is a substring (or subword) of string w if there exist strings x, z such that w = xyz. A string x is a prefix of string w if there exists a string y such that w = xy. A string y is a suffix of string w if there exists a string x such that w = xy. So by definition an empty string is a substring, prefix, and suffix of any string; and any string is a substring, prefix, and suffix of itself. String x is a *subsequence* of string y if x can be obtained by striking out 0 or more symbols from y. For example **bat** is a subsequence of of habitat.

Let $w = w_1 w_2 \dots w_n$ be a string of length *n*. By the *reversal of* w, notated w^R , we mean the string $w_n w_{n-1} \dots w_1$. For example, $\operatorname{star}^R = \operatorname{rats}$. A string w is a *palindrome* if $w^R = w$. Examples of palindromes are eve, madam, racecar, deified, rotator.

Given an alphabet Σ , we define Σ^* to be the set of all strings over Σ , e.g., for $\Sigma = \{a, b\}$ we have $\Sigma^* = \{\varepsilon, a, b, aa, ab, ba, bb, aaa, ... \}$. The listing of strings here is in *shortlex* order (or string order or radix order), i.e., ordered like in a dictionary, except that a shorter string always precede a longer one.

Exercises.

- 1. Define < for dictionary order (or lexicographic order) precisely.
- 2. Define < for shortlex order (or string order, or radix order) precisely.
- 3. What is the position of the string ab, when the strings of {a,b}* are arranged in dictionary order? in shortlex order?

A language over the alphabet Σ is any subset of Σ^* . Here are some example languages.

- 1. The set of all strings with an odd number of a's.
- 2. The set of all palindromes.
- 3. The set of all strings of "balanced" left and right parentheses.
- 4. The set of all strings containing equal numbers of a's, b's, and c's.
- 5. The set of all binary strings that represent prime numbers.
- 6. The set of all graphs with a Hamiltonian cycle, where the graph is encoded as a string.
- 7. \emptyset and $\{\varepsilon\}$ are (different) languages

Remarks.

- 1. The subject matter of this course concerns languages and machines that recognize/compute them!
- 2. Finite languages are trivial.
- 3. A lone letter like **a** is ambiguous. It either represents a symbol or a string of length 1. Context decides which meaning is intended.
- 4. The concept of "string", "concatenation", "length of of string", "reversal of a string", etc., can be defined recursively as well.

Operations on Languages

Set Operations \cup , \cap , \setminus , \triangle , complement \overline{A} of a language A, etc.

Concatenation The concatenation of two languages A and B is AB, i.e., the set of all strings xy where $x \in A$ and $y \in B$.

When precision is desired, concatenation is denoted by \circ , e.g., $x \circ y$, $A \circ B$.

Examples. Let $O = \{$ all strings of odd length $\}$, $E = \{$ all strings of even length $\}$, and $N = \{$ a $\}$. Then $ON = \{$ all strings of even length ending in a $\}$, OE = O, and $E^2 = E$.

For any language A, language A^0 denotes $\{\varepsilon\}$; languages A^i denotes AA^{i-1} whenever i > 0.

Kleene Closure $A^* = \bigcup_{i=0}^{\infty} A^i$. For example, $\emptyset^* = \{\varepsilon\}$. Note how this definition of * agrees nicely with our previous definition of * in Σ^* if we identify a string of length one with the symbol contained in it.

Positive Closure $A^+ = \bigcup_{i=1}^{\infty} A^i$.

Exercises.

1. Is it true that $A^+ = A^* \setminus \{\varepsilon\}$ for every language A?.

- 2. Which of the 7 example languages A above have $A = A^*$?
- 3. Characterize languages A that satisfy $A^* = A^+$?
- 4. Describe these languages $A\emptyset$, $A\{\varepsilon\}$, $A \cup \emptyset$, $A \cup \{\varepsilon\}$.
- 5. The \cup and the \circ operators for languages are comparable to the + and the * operators for numbers, respectively. What is the identity element for \cup ? for \circ ? What rules governing + and * are also obeyed by \cup and \circ ?