Finite Automata

Sipser Ch 1: p31-44, p47-54

A deterministic finite automaton (DFA) M is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$, where

- 1. Q is a finite set of *states*,
- 2. Σ is an *alphabet*,
- 3. $\delta: Q \times \Sigma \to Q$ is a transition function,
- 4. $q_0 \in Q$ is the *start state*, and
- 5. $F \subseteq Q$ is the set of *accept* or *final states*.

A string $w \in \Sigma^*$ of length *n* is *accepted* by *M* if and only if there exists a sequence of states r_0, r_1, \ldots, r_n such that

- 1. $r_0 = q_0$,
- 2. $r_n \in F$, and
- 3. $\delta(r_i, w_{i+1}) = r_{i+1}$ for $i = 0, 1, \dots, n-1$.

The set of all strings accepted by M is the *language recognized by* M, written L(M), i.e., $L(M) = \{w \in \Sigma^* : M \text{ accepts } w\}.$

A DFA can be represented pictorially by a *state diagram*. A *state diagram* is basically a (multi)digraph where vertices represent states, and edges correspond to state transitions (each edge is labelled by a symbol causing that transition). A start state is indicated by a an arrow originating from nowhere pointing into it. A final state is indicated by double circle.

In terms of diagram, a string w of length n is accepted by the DFA if and only if there exists a directed path that begins from the start state and ends in some final state such that the sequence of labels on the edges of the path is w_1, w_2, \ldots, w_n .

Example:

This diagram represents the DFA $M = (Q, \Sigma, \delta, q_0, F)$, where

- 1. $Q = \{q_0, q_1, q_2, q_3\},\$
- $2. \ \Sigma = \{a, b\},$
- 3. δ is given by the following table

δ	a	b
q_0	q_1	q_3
q_1	q_3	q_2
q_2	q_2	q_2
q_3	q_3	q_1

- 4. q_0 is the start state, and
- 5. $F = \{q_2\}.$

Note: We use comma-separated list of symbols as a shorthand for parallel edges, each labelled by a symbol in the list.

We may even use ellipsis to stand for understood omitted symbols.

$$\rightarrow q_0$$
 a, \ldots, z $\rightarrow q_1$ $a, \ldots, z, 0, \ldots, 9$

Sipser also uses Σ to represent a list of all symbols from the alphabet.

A nondeterministic finite automaton (NFA) M is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$, where

- 1. Q is a finite set of *states*,
- 2. Σ is an *alphabet*,
- 3. $\delta: Q \times (\Sigma \cup \{\varepsilon\}) \to 2^Q$ is the transition function,
- 4. $q_0 \in Q$ is the start state, and
- 5. $F \subseteq Q$ is the set of accept or final states.

A string $w \in \Sigma^*$ of length *n* is *accepted* by *M* if and only if we can write $w = y_1 y_2 \dots y_m$, where each $y_i = \varepsilon$ or $y_i \in \Sigma$, and there exists a sequence of states r_0, r_1, \dots, r_m such that

- 1. $r_0 = q_0$,
- 2. $r_m \in F$, and
- 3. $r_{i+1} \in \delta(r_i, y_{i+1})$ for $i = 0, 1, \dots, m-1$.

The set of all strings accepted by M is the language L(M) recognized by M, i.e., $L(M) = \{w \in \Sigma^* : M \text{ accepts } w\}$. Note that $m \neq n$ is possible. (Why?)

Notes:

1. In a state diagram for a DFA where Σ has *n* symbols, every state has exactly *n* edges leaving it, one edge per symbol in Σ . In a state diagram for an NFA, on the other hand, some state may have more or fewer than *n* edges leaving it. Moreover, two edges leaving the same state may have the same label, and some edge may be labelled with ε .

2. If a string w is accepted by a DFA, then there exists a unique path from the start state to a final state that traces out w. On the other hand, if a string w is accepted by a NFA, then there exists at least one path (may be more) from the start state to some final state that traces out w.

Example:

Let L_3 be the language of all strings over $\Sigma = \{a, b\}$ whose 3rd symbol from the right end is a. Here is an NFA recognizing L_3 .

A DFA recognizing L_3 will have to memorize the last 3 symbols seen, i.e., it needs 2^3 states (in general, $|\Sigma|^3$ states).

Exercise. Design a DFA that recognizes L_3 .