MCS-265: The Theory of Computation Handout #R1
San Skulrattanakulchai

Gustavus Adolphus College February 13, 2014

Finite Automata

Sipser Ch 1: p31-44, p47-54
A deterministic finite automaton (DFA) M is a 5-tuple (Q, 3, 9, qo, F'), where

1. @ is a finite set of states,

2. Y is an alphabet,

3. 0:Q x X — @Qis a transition function,
4. qo € Q is the start state, and

5. F C Q is the set of accept or final states.

A string w € ¥* of length n is accepted by M if and only if there exists a sequence of

states rq, 71, ..., 7, such that

1. o = qo,

2. r, € F,and
3. 0(ri,wit1) =1rigg fori=0,1,...,n— 1.

The set of all strings accepted by M is the language recognized by M, written L(M), i.e.,
L(M) ={w e ¥*: M accepts w}.

A DFA can be represented pictorially by a state diagram. A state diagram is basically a
(multi)digraph where vertices represent states, and edges correspond to state transitions
(each edge is labelled by a symbol causing that transition). A start state is indicated by
a an arrow originating from nowhere pointing into it. A final state is indicated by double

circle.

In terms of diagram, a string w of length n is accepted by the DFA if and only if there
exists a directed path that begins from the start state and ends in some final state such

that the sequence of labels on the edges of the path is wq, wo, ..., w,.

2 MCS-265: Handout #R1

Example:

This diagram represents the DFA M = (Q, %, 9, qo, F'), where

1. Q =190, 01,99},

2. ¥ ={a,b},

3. ¢ is given by the following table

0| a b
do | 91 43
a1 | 93 42
a2 | G2 Q2
g3 | 43 ¢1

4. qq is the start state, and

5. F ={¢}.

Note: We use comma-separated list of symbols as a shorthand for parallel edges, each
labelled by a symbol in the list.

@ a,b, c

We may even use ellipsis to stand for understood omitted symbols.

@ Z....2 a,...,z, 0,...,9

Sipser also uses ¥ to represent a list of all symbols from the alphabet.

MCS-265: Handout #R1 3

A nondeterministic finite automaton (NFA) M is a 5-tuple (Q, X, 6, qo, F'), where

—_

. @ is a finite set of states,

2. X is an alphabet,

w

. 6:Q x (X U{e}) — 29 is the transition function,

S

. Qo € Q is the start state, and

5. F C @ is the set of accept or final states.

A string w € X* of length n is accepted by M if and only if we can write w = y1ys . . . Y,

where each y; = € or y; € 3, and there exists a sequence of states rq, 71, ..., 7, such that
L. rg= 4o,
2. ry, € F, and

3. T Eé(riayi—l—l) fori=0,1,....,m—1.

The set of all strings accepted by M is the language L(M) recognized by M, i.e., L(M) =
{w € ¥* : M accepts w}. Note that m # n is possible. (Why?)

Notes:

1. In a state diagram for a DFA where X has n symbols, every state has exactly n edges
leaving it, one edge per symbol in Y. In a state diagram for an NFA, on the other hand,
some state may have more or fewer than n edges leaving it. Moreover, two edges leaving

the same state may have the same label, and some edge may be labelled with .

2. If a string w is accepted by a DFA, then there exists a unique path from the start
state to a final state that traces out w. On the other hand, if a string w is accepted by
a NFA, then there exists at least one path (may be more) from the start state to some

final state that traces out w.
Example:

Let L3 be the language of all strings over ¥ = {a, b} whose 3rd symbol from the right

end is a. Here is an NFA recognizing Ls.

4 MCS-265: Handout #R1

A DFA recognizing Lz will have to memorize the last 3 symbols seen, i.e., it needs 23

states (in general, | 2|3 states).

Ezxercise. Design a DFA that recognizes Ls.

