
MCS-265: The Theory of Computation Handout #R1

San Skulrattanakulchai

Gustavus Adolphus College February 13, 2014

Finite Automata

Sipser Ch 1: p31–44, p47–54

A deterministic finite automaton (DFA) M is a 5-tuple (Q, Σ, δ, q0, F), where

1. Q is a finite set of states,

2. Σ is an alphabet,

3. δ : Q × Σ → Q is a transition function,

4. q0 ∈ Q is the start state, and

5. F ⊆ Q is the set of accept or final states.

A string w ∈ Σ∗ of length n is accepted by M if and only if there exists a sequence of

states r0, r1, . . . , rn such that

1. r0 = q0,

2. rn ∈ F , and

3. δ(ri, wi+1) = ri+1 for i = 0, 1, . . . , n − 1.

The set of all strings accepted by M is the language recognized by M , written L(M), i.e.,

L(M) = {w ∈ Σ∗ : M accepts w}.

A DFA can be represented pictorially by a state diagram. A state diagram is basically a

(multi)digraph where vertices represent states, and edges correspond to state transitions

(each edge is labelled by a symbol causing that transition). A start state is indicated by

a an arrow originating from nowhere pointing into it. A final state is indicated by double

circle.

In terms of diagram, a string w of length n is accepted by the DFA if and only if there

exists a directed path that begins from the start state and ends in some final state such

that the sequence of labels on the edges of the path is w1, w2, . . . , wn.

2 MCS-265: Handout #R1

Example:

q0 q1 q2

q3

a b

b

a

b

a

a

b

This diagram represents the DFA M = (Q, Σ, δ, q0, F), where

1. Q = {q0, q1, q2, q3},

2. Σ = {a, b},

3. δ is given by the following table

δ a b

q0 q1 q3

q1 q3 q2

q2 q2 q2

q3 q3 q1

4. q0 is the start state, and

5. F = {q2}.

Note: We use comma-separated list of symbols as a shorthand for parallel edges, each

labelled by a symbol in the list.

q0 q1

a, b, c

We may even use ellipsis to stand for understood omitted symbols.

q0 q1
a, . . . , z

a, . . . , z, 0, . . . , 9

Sipser also uses Σ to represent a list of all symbols from the alphabet.

MCS-265: Handout #R1 3

A nondeterministic finite automaton (NFA) M is a 5-tuple (Q, Σ, δ, q0, F), where

1. Q is a finite set of states,

2. Σ is an alphabet,

3. δ : Q × (Σ ∪ {ε}) → 2Q is the transition function,

4. q0 ∈ Q is the start state, and

5. F ⊆ Q is the set of accept or final states.

A string w ∈ Σ∗ of length n is accepted by M if and only if we can write w = y1y2 . . . ym,

where each yi = ε or yi ∈ Σ, and there exists a sequence of states r0, r1, . . . , rm such that

1. r0 = q0,

2. rm ∈ F , and

3. ri+1 ∈ δ(ri, yi+1) for i = 0, 1, . . . , m − 1.

The set of all strings accepted by M is the language L(M) recognized by M , i.e., L(M) =

{w ∈ Σ∗ : M accepts w}. Note that m 6= n is possible. (Why?)

Notes:

1. In a state diagram for a DFA where Σ has n symbols, every state has exactly n edges

leaving it, one edge per symbol in Σ. In a state diagram for an NFA, on the other hand,

some state may have more or fewer than n edges leaving it. Moreover, two edges leaving

the same state may have the same label, and some edge may be labelled with ε.

2. If a string w is accepted by a DFA, then there exists a unique path from the start

state to a final state that traces out w. On the other hand, if a string w is accepted by

a NFA, then there exists at least one path (may be more) from the start state to some

final state that traces out w.

Example:

Let L3 be the language of all strings over Σ = {a, b} whose 3rd symbol from the right

end is a. Here is an NFA recognizing L3.

4 MCS-265: Handout #R1

q0 q1 q2 q3
a a, b a, b

a, b

A DFA recognizing L3 will have to memorize the last 3 symbols seen, i.e., it needs 23

states (in general, |Σ|3 states).

Exercise. Design a DFA that recognizes L3.

